Suppr超能文献

微血管内皮细胞沿流向逆流而上,并与冲击流产生的剪切力场对齐。

Microvascular endothelial cells migrate upstream and align against the shear stress field created by impinging flow.

机构信息

Chemical Engineering, Stanford University, Stanford, California.

Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Stanford Cardiovascular Institute, Stanford University, Stanford, Califiornia; Division of Cardiovascular Medicine, Stanford University, Stanford, California.

出版信息

Biophys J. 2014 Jan 21;106(2):366-74. doi: 10.1016/j.bpj.2013.11.4502.

Abstract

At present, little is known about how endothelial cells respond to spatial variations in fluid shear stress such as those that occur locally during embryonic development, at heart valve leaflets, and at sites of aneurysm formation. We built an impinging flow device that exposes endothelial cells to gradients of shear stress. Using this device, we investigated the response of microvascular endothelial cells to shear-stress gradients that ranged from 0 to a peak shear stress of 9-210 dyn/cm(2). We observe that at high confluency, these cells migrate against the direction of fluid flow and concentrate in the region of maximum wall shear stress, whereas low-density microvascular endothelial cells that lack cell-cell contacts migrate in the flow direction. In addition, the cells align parallel to the flow at low wall shear stresses but orient perpendicularly to the flow direction above a critical threshold in local wall shear stress. Our observations suggest that endothelial cells are exquisitely sensitive to both magnitude and spatial gradients in wall shear stress. The impinging flow device provides a, to our knowledge, novel means to study endothelial cell migration and polarization in response to gradients in physical forces such as wall shear stress.

摘要

目前,人们对于内皮细胞如何响应流体切应力的空间变化知之甚少,例如在胚胎发育过程中局部发生的变化、心瓣膜小叶以及动脉瘤形成部位发生的变化。我们构建了一个冲击流装置,使内皮细胞暴露于切应力梯度中。使用该装置,我们研究了微血管内皮细胞对切应力梯度的反应,该梯度范围从 0 到 9-210 dyn/cm(2)的峰值切应力。我们观察到,在高细胞密度下,这些细胞逆着流体流动的方向迁移,并集中在壁面切应力最大的区域,而缺乏细胞-细胞接触的低密度微血管内皮细胞则沿流动方向迁移。此外,当壁面切应力低于一个临界阈值时,细胞沿流动方向平行排列,但在局部壁面切应力超过该阈值时,细胞垂直于流动方向排列。我们的观察结果表明,内皮细胞对壁面切应力的大小和空间梯度非常敏感。冲击流装置为我们提供了一种新颖的手段,可用于研究内皮细胞在物理力(如壁面切应力)梯度作用下的迁移和极化。

相似文献

2
Multiplexed Fluid Flow Device to Study Cellular Response to Tunable Shear Stress Gradients.
Ann Biomed Eng. 2016 Jul;44(7):2261-72. doi: 10.1007/s10439-015-1500-7. Epub 2015 Nov 20.
5
Fluid shear stress threshold regulates angiogenic sprouting.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):7968-73. doi: 10.1073/pnas.1310842111. Epub 2014 May 19.
6
Lymphatic endothelial cell calcium pulses are sensitive to spatial gradients in wall shear stress.
Mol Biol Cell. 2019 Mar 21;30(7):923-931. doi: 10.1091/mbc.E18-10-0618. Epub 2019 Feb 27.
8
Human brain microvascular endothelial cells resist elongation due to shear stress.
Microvasc Res. 2015 May;99:8-18. doi: 10.1016/j.mvr.2015.02.008. Epub 2015 Feb 26.
9
Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet.
Biomech Model Mechanobiol. 2012 Jan;11(1-2):231-44. doi: 10.1007/s10237-011-0306-2. Epub 2011 Apr 5.
10
Fluid shear, intercellular stress, and endothelial cell alignment.
Am J Physiol Cell Physiol. 2015 Apr 15;308(8):C657-64. doi: 10.1152/ajpcell.00363.2014. Epub 2015 Feb 4.

引用本文的文献

1
Angiogenesis: Biological Mechanisms and In Vitro Models.
Ann Biomed Eng. 2025 Apr 10. doi: 10.1007/s10439-025-03721-2.
2
Transcriptional Responses of In Vitro Blood-Brain Barrier Models to Shear Stress.
Biomolecules. 2025 Jan 29;15(2):193. doi: 10.3390/biom15020193.
3
Hemodynamics of asymmetrically stenotic vertebral arteries based on fluid-solid coupling.
J Biol Phys. 2025 Feb 17;51(1):10. doi: 10.1007/s10867-025-09673-x.
4
Physical principles and mechanisms of cell migration.
NPJ Biol Phys Mech. 2025;2(1):2. doi: 10.1038/s44341-024-00008-w. Epub 2025 Jan 16.
5
Hemodynamic Characteristics of a Tortuous Microvessel Using High-Fidelity Red Blood Cell Resolved Simulations.
Microcirculation. 2024 Oct;31(7):e12875. doi: 10.1111/micc.12875. Epub 2024 Jul 11.
7
Using a probabilistic approach to derive a two-phase model of flow-induced cell migration.
Biophys J. 2024 Apr 2;123(7):799-813. doi: 10.1016/j.bpj.2024.02.017. Epub 2024 Feb 28.
8
Forces and Flows at Cell Surfaces.
J Membr Biol. 2023 Dec;256(4-6):331-340. doi: 10.1007/s00232-023-00293-x. Epub 2023 Sep 29.
9
Angiogenic Microvascular Wall Shear Stress Patterns Revealed Through Three-dimensional Red Blood Cell Resolved Modeling.
Function (Oxf). 2023 Aug 29;4(6):zqad046. doi: 10.1093/function/zqad046. eCollection 2023.

本文引用的文献

1
Computational fluid dynamics simulation of an anterior communicating artery ruptured during angiography.
BMJ Case Rep. 2013 Mar 7;2013:bcr2012010596. doi: 10.1136/bcr-2012-010596.
2
4D shear stress maps of the developing heart using Doppler optical coherence tomography.
Biomed Opt Express. 2012 Nov 1;3(11):3022-32. doi: 10.1364/BOE.3.003022. Epub 2012 Oct 31.
3
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.
4
Microfluidic endothelial cell culture model to replicate disturbed flow conditions seen in atherosclerosis susceptible regions.
Biomicrofluidics. 2011 Sep;5(3):32006-3200611. doi: 10.1063/1.3608137. Epub 2011 Sep 20.
5
Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions.
Am J Physiol Heart Circ Physiol. 2012 Jun 1;302(11):H2220-9. doi: 10.1152/ajpheart.00975.2011. Epub 2012 Mar 23.
6
Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells.
Biomech Model Mechanobiol. 2013 Jan;12(1):111-21. doi: 10.1007/s10237-012-0385-8. Epub 2012 Mar 13.
7
Primary cilia as biomechanical sensors in regulating endothelial function.
Differentiation. 2012 Feb;83(2):S56-61. doi: 10.1016/j.diff.2011.11.007. Epub 2011 Dec 9.
8
The control of endothelial cell adhesion and migration by shear stress and matrix-substrate anchorage.
Biomaterials. 2012 Mar;33(7):1959-69. doi: 10.1016/j.biomaterials.2011.11.017. Epub 2011 Dec 10.
10
Role for primary cilia as flow detectors in the cardiovascular system.
Int Rev Cell Mol Biol. 2011;290:87-119. doi: 10.1016/B978-0-12-386037-8.00004-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验