Polak Andraž, Tarek Mounir, Tomšič Matija, Valant Janez, Ulrih Nataša Poklar, Jamnik Andrej, Kramar Peter, Miklavčič Damijan
University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia.
Université de Lorraine, UMR 7565, F-54506 Vandoeuvre-lés-Nancy, France; CNRS, UMR 7565, F-54506 Vandoeuvre-lés-Nancy, France.
Bioelectrochemistry. 2014 Dec;100:18-26. doi: 10.1016/j.bioelechem.2013.12.006. Epub 2014 Jan 9.
Molecular dynamics (MD) simulations were used to investigate the electroporation of archaeal lipid bilayers when subjected to high transmembrane voltages induced by a charge imbalance, mimicking therefore millisecond electric pulse experiments. The structural characteristics of the bilayer, a 9:91 mol% 2,3-di-O-sesterterpanyl-sn-glicerol-1-phospho-myo-inositol (AI) and 2,3-di-O-sesterterpanyl-sn-glicerol-1-phospho-1'(2'-O-α-D-glucosyl)-myo-inositol (AGI) were compared to small angle X-ray scattering data. A rather good agreement of the electron density profiles at temperatures of 298 and 343 K was found assessing therefore the validity of the protocols and force fields used in simulations. Compared to dipalmitoyl-phosphatidylcholine (DPPC), the electroporation threshold for the bilayer was found to increase from ~2 V to 4.3 V at 323 K, and to 5.2 V at 298 K. Comparing the electroporation thresholds of the archaeal lipids to those of simple diphytanoyl-phosphatidylcholine (DPhPC) bilayers (2.5 V at 323 K) allowed one to trace back the stability of the membranes to the structure of their lipid head groups. Addition of DPPC in amounts of 50 mol% to the archaeal lipid bilayers decreases their stability and lowers the electroporation thresholds to 3.8 V and 4.1 V at respectively 323 and 298 K. The present study therefore shows how membrane compositions can be selected to cover a wide range of responses to electric stimuli. This provides new routes for the design of liposomes that can be efficiently used as drug delivery carriers, as the selection of their composition allows one to tune in their electroporation threshold for subsequent release of their load.
分子动力学(MD)模拟用于研究古细菌脂质双层在电荷失衡引起的高跨膜电压作用下的电穿孔现象,从而模拟毫秒级电脉冲实验。将双层结构的特征,即9:91摩尔百分比的2,3 - 二 - O - 倍半萜基 - sn - 甘油 - 1 - 磷酸 - 肌醇(AI)和2,3 - 二 - O - 倍半萜基 - sn - 甘油 - 1 - 磷酸 - 1'(2'-O-α - D - 葡萄糖基)-肌醇(AGI)与小角X射线散射数据进行了比较。在298 K和343 K温度下,电子密度分布取得了相当好的一致性,从而评估了模拟中使用的协议和力场的有效性。与二棕榈酰磷脂酰胆碱(DPPC)相比,发现双层在323 K时的电穿孔阈值从约2 V增加到4.3 V,在298 K时增加到5.2 V。将古细菌脂质的电穿孔阈值与简单的二植烷酰磷脂酰胆碱(DPhPC)双层(323 K时为2.5 V)的电穿孔阈值进行比较,可以将膜的稳定性追溯到其脂质头部基团的结构。向古细菌脂质双层中添加50摩尔百分比的DPPC会降低其稳定性,并分别在323 K和298 K时将电穿孔阈值降低到3.8 V和4.1 V。因此,本研究展示了如何选择膜组成以涵盖对电刺激的广泛响应。这为脂质体的设计提供了新途径,脂质体可有效地用作药物递送载体,因为其组成的选择允许调整其电穿孔阈值以随后释放其负载。