Suppr超能文献

随机和非结构化网格上的空间侵袭动力学:对异质性肿瘤群体的影响。

Spatial invasion dynamics on random and unstructured meshes: implications for heterogeneous tumor populations.

作者信息

Manem V S K, Kohandel M, Komarova N L, Sivaloganathan S

机构信息

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1; Center for Mathematical Medicine, Fields Institute for Research in Mathematical Sciences, Toronto, ON, Canada M5T 3J1.

出版信息

J Theor Biol. 2014 May 21;349:66-73. doi: 10.1016/j.jtbi.2014.01.009. Epub 2014 Jan 23.

Abstract

In this work we discuss a spatial evolutionary model for a heterogeneous cancer cell population. We consider the gain-of-function mutations that not only change the fitness potential of the mutant phenotypes against normal background cells but may also increase the relative motility of the mutant cells. The spatial modeling is implemented as a stochastic evolutionary system on a structured grid (a lattice, with random neighborhoods, which is not necessarily bi-directional) or on a two-dimensional unstructured mesh, i.e. a bi-directional graph with random numbers of neighbors. We present a computational approach to investigate the fixation probability of mutants in these spatial models. Additionally, we examine the effect of the migration potential on the spatial dynamics of mutants on unstructured meshes. Our results suggest that the probability of fixation is negatively correlated with the width of the distribution of the neighborhood size. Also, the fixation probability increases given a migration potential for mutants. We find that the fixation probability (of advantaged, disadvantaged and neutral mutants) on unstructured meshes is relatively smaller than the corresponding results on regular grids. More importantly, in the case of neutral mutants the introduction of a migration potential has a critical effect on the fixation probability and increases this by orders of magnitude. Further, we examine the effect of boundaries and as intuitively expected, the fixation probability is smaller on the boundary of regular grids when compared to its value in the bulk. Based on these computational results, we speculate on possible better therapeutic strategies that may delay tumor progression to some extent.

摘要

在这项工作中,我们讨论了一种针对异质性癌细胞群体的空间进化模型。我们考虑功能获得性突变,这些突变不仅会改变突变表型相对于正常背景细胞的适应潜力,还可能增加突变细胞的相对运动性。空间建模被实现为一个在结构化网格(一种晶格,具有随机邻域,不一定是双向的)或二维非结构化网格(即具有随机邻居数量的双向图)上的随机进化系统。我们提出了一种计算方法来研究这些空间模型中突变体的固定概率。此外,我们研究了迁移潜力对非结构化网格上突变体空间动态的影响。我们的结果表明,固定概率与邻域大小分布的宽度呈负相关。而且,给定突变体的迁移潜力时,固定概率会增加。我们发现非结构化网格上(优势、劣势和中性突变体的)固定概率相对小于规则网格上的相应结果。更重要的是,在中性突变体的情况下,引入迁移潜力对固定概率有关键影响,并使其增加几个数量级。此外,我们研究了边界的影响,正如直观预期的那样,与规则网格主体中的值相比,规则网格边界上的固定概率较小。基于这些计算结果,我们推测了一些可能在一定程度上延迟肿瘤进展的更好治疗策略。

相似文献

1
Spatial invasion dynamics on random and unstructured meshes: implications for heterogeneous tumor populations.
J Theor Biol. 2014 May 21;349:66-73. doi: 10.1016/j.jtbi.2014.01.009. Epub 2014 Jan 23.
2
Modeling Invasion Dynamics with Spatial Random-Fitness Due to Micro-Environment.
PLoS One. 2015 Oct 28;10(10):e0140234. doi: 10.1371/journal.pone.0140234. eCollection 2015.
3
The effect of spatial randomness on the average fixation time of mutants.
PLoS Comput Biol. 2017 Nov 27;13(11):e1005864. doi: 10.1371/journal.pcbi.1005864. eCollection 2017 Nov.
5
Environmental spatial and temporal variability and its role in non-favoured mutant dynamics.
J R Soc Interface. 2019 Aug 30;16(157):20180781. doi: 10.1098/rsif.2018.0781. Epub 2019 Aug 14.
6
Spatial stochastic models of cancer: fitness, migration, invasion.
Math Biosci Eng. 2013 Jun;10(3):761-75. doi: 10.3934/mbe.2013.10.761.
7
Methods for approximating stochastic evolutionary dynamics on graphs.
J Theor Biol. 2019 May 7;468:45-59. doi: 10.1016/j.jtbi.2019.02.009. Epub 2019 Feb 14.
8
Martingales and the fixation probability of high-dimensional evolutionary graphs.
J Theor Biol. 2018 Aug 14;451:10-18. doi: 10.1016/j.jtbi.2018.04.039. Epub 2018 May 1.
9
Evolutionary dynamics of mutants that modify population structure.
J R Soc Interface. 2023 Nov;20(208):20230355. doi: 10.1098/rsif.2023.0355. Epub 2023 Nov 29.
10
Fitness dependence of the fixation-time distribution for evolutionary dynamics on graphs.
Phys Rev E. 2019 Jul;100(1-1):012408. doi: 10.1103/PhysRevE.100.012408.

引用本文的文献

1
Substrate geometry affects population dynamics in a bacterial biofilm.
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2315361121. doi: 10.1073/pnas.2315361121. Epub 2024 Apr 15.
2
Evolutionary dynamics of mutants that modify population structure.
J R Soc Interface. 2023 Nov;20(208):20230355. doi: 10.1098/rsif.2023.0355. Epub 2023 Nov 29.
3
The role of evolutionary game theory in spatial and non-spatial models of the survival of cooperation in cancer: a review.
J R Soc Interface. 2022 Aug;19(193):20220346. doi: 10.1098/rsif.2022.0346. Epub 2022 Aug 17.
4
The network structure affects the fixation probability when it couples to the birth-death dynamics in finite population.
PLoS Comput Biol. 2021 Oct 27;17(10):e1009537. doi: 10.1371/journal.pcbi.1009537. eCollection 2021 Oct.
5
Martingales and the characteristic functions of absorption time on bipartite graphs.
R Soc Open Sci. 2021 Oct 20;8(10):210657. doi: 10.1098/rsos.210657. eCollection 2021 Oct.
6
Normal tissue architecture determines the evolutionary course of cancer.
Nat Commun. 2021 Apr 6;12(1):2060. doi: 10.1038/s41467-021-22123-1.
7
The Moran process on 2-chromatic graphs.
PLoS Comput Biol. 2020 Nov 5;16(11):e1008402. doi: 10.1371/journal.pcbi.1008402. eCollection 2020 Nov.
8
Is cell migration a selectable trait in the natural evolution of cancer development?
Philos Trans R Soc Lond B Biol Sci. 2019 Aug 19;374(1779):20180224. doi: 10.1098/rstb.2018.0224. Epub 2019 Jul 1.
9
Environmental fitness heterogeneity in the Moran process.
R Soc Open Sci. 2019 Jan 16;6(1):181661. doi: 10.1098/rsos.181661. eCollection 2019 Jan.
10
Tuning Spatial Profiles of Selection Pressure to Modulate the Evolution of Drug Resistance.
Phys Rev Lett. 2018 Jun 8;120(23):238102. doi: 10.1103/PhysRevLett.120.238102.

本文引用的文献

1
FIXATION PROBABILITIES AND FIXATION TIMES IN A SUBDIVIDED POPULATION.
Evolution. 1981 May;35(3):477-488. doi: 10.1111/j.1558-5646.1981.tb04911.x.
2
Stochastic dynamics of cancer initiation.
Phys Biol. 2011 Feb;8(1):015002. doi: 10.1088/1478-3975/8/1/015002. Epub 2011 Feb 7.
3
Nonlinear modelling of cancer: bridging the gap between cells and tumours.
Nonlinearity. 2010;23(1):R1-R9. doi: 10.1088/0951-7715/23/1/r01.
4
6
Multiscale modelling and nonlinear simulation of vascular tumour growth.
J Math Biol. 2009 Apr;58(4-5):765-98. doi: 10.1007/s00285-008-0216-9. Epub 2008 Sep 10.
7
Invasion emerges from cancer cell adaptation to competitive microenvironments: quantitative predictions from multiscale mathematical models.
Semin Cancer Biol. 2008 Oct;18(5):338-48. doi: 10.1016/j.semcancer.2008.03.018. Epub 2008 Apr 1.
8
Voter models on heterogeneous networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041121. doi: 10.1103/PhysRevE.77.041121. Epub 2008 Apr 22.
9
Integrative mathematical oncology.
Nat Rev Cancer. 2008 Mar;8(3):227-34. doi: 10.1038/nrc2329.
10
An evolutionary hybrid cellular automaton model of solid tumour growth.
J Theor Biol. 2007 Jun 21;246(4):583-603. doi: 10.1016/j.jtbi.2007.01.027. Epub 2007 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验