Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
1] Department of Biology, Indiana University, Bloomington, Indiana 47405, USA [2] Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA.
Nature. 2014 Feb 27;506(7489):489-93. doi: 10.1038/nature12900. Epub 2014 Jan 19.
What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.
是什么机制导致了生命世界中观察到的多样形状的转变?尽管细菌表现出了无数的形态,但负责细菌细胞形状进化的机制尚不清楚。我们研究了一组细菌的形态多样性,这些细菌合成一种类似细胞外膜延伸的附属物,称为菌柄。菌柄的位置和数量在不同物种之间存在差异,例如杆状细胞体内菌柄的三个不同亚细胞位置:在 Caulobacter 属中是极性的,在 Asticcacaulis 属中是亚极性或双侧的。在这里,我们表明,Caulobacter crescentus 的发育调节剂 SpmX 在 Asticcacaulis 属中被共同用于指定菌柄在亚极性或双侧位置的合成。我们还表明,SpmX 的特定区域的逐步进化导致了该蛋白新功能和定位的获得,从而推动了菌柄定位的连续转变。我们的结果表明,蛋白质功能的变化、共同作用和模块性是细菌形态进化的关键因素。因此,形态转变的类似进化原则既适用于单细胞原核生物,也适用于多细胞真核生物。