Delaby Marie, Yang Liu, Jacq Maxime, Gallagher Kelley A, Kysela David T, Hughes Velocity, Pulido Francisco, Veyrier Frederic J, VanNieuwenhze Michael S, Brun Yves V
Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (Québec) H3C 3J7, Canada.
Current Address: Biosphere Sciences and Engineering, Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, California, 91101, United States.
bioRxiv. 2024 Nov 7:2024.11.07.622495. doi: 10.1101/2024.11.07.622495.
Cell elongation is a fundamental component of the bacterial cell cycle and has been studied over many decades, in part owing to its mechanisms being a target of numerous antibiotic classes. While several distinct modes of cell elongation have been described, these studies have largely relied on a handful of model bacterial species. Therefore, we have a limited view of the diversity of cell elongation approaches that are employed by bacteria, and how these vary in response to evolutionary and environmental influences. Here, by employing fluorescent D-amino acids (FDAAs) to track the spatiotemporal dynamics of elongation, we reveal previously unsuspected diversity of elongation modes among closely related species of the , with species-specific combinations of dispersed, midcell and polar elongation that can be either unidirectional or bidirectional. Using genetic, cell biology, and phylogenetic approaches, we demonstrate that evolution of unidirectional-midcell elongation is accompanied by changes in the localization pattern of the peptidoglycan synthase PBP2 and infer that elongation complexes display a high degree of phenotypic plasticity, both among the and more widely among the Alphaproteobacteria. Demonstration that even closely related bacterial species employ highly distinct mechanisms of cell elongation reshapes our understanding of the evolution and regulation of bacterial cell growth, with broad implications for bacterial morphology, adaptation, and antibiotic resistance.
细胞伸长是细菌细胞周期的一个基本组成部分,几十年来一直受到研究,部分原因是其机制是众多抗生素类别的作用靶点。虽然已经描述了几种不同的细胞伸长模式,但这些研究很大程度上依赖于少数几种模式细菌物种。因此,我们对细菌采用的细胞伸长方式的多样性以及这些方式如何随进化和环境影响而变化的了解有限。在这里,通过使用荧光D-氨基酸(FDAAs)来追踪伸长的时空动态,我们揭示了在 密切相关物种中以前未被怀疑的伸长模式多样性,具有分散、细胞中部和极性伸长的物种特异性组合,这些伸长可以是单向的或双向的。使用遗传学、细胞生物学和系统发育方法,我们证明单向细胞中部伸长的进化伴随着肽聚糖合酶PBP2定位模式的变化,并推断伸长复合体在 以及更广泛的α-变形菌纲中表现出高度的表型可塑性。证明即使是密切相关的细菌物种也采用高度不同的细胞伸长机制,重塑了我们对细菌细胞生长进化和调控的理解,对细菌形态、适应性和抗生素抗性具有广泛影响。