1] Genetics and Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada. [2].
1] Genetics and Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada. [2] Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
Nat Methods. 2014 Mar;11(3):333-7. doi: 10.1038/nmeth.2810. Epub 2014 Jan 26.
Recent technologies have made it cost-effective to collect diverse types of genome-wide data. Computational methods are needed to combine these data to create a comprehensive view of a given disease or a biological process. Similarity network fusion (SNF) solves this problem by constructing networks of samples (e.g., patients) for each available data type and then efficiently fusing these into one network that represents the full spectrum of underlying data. For example, to create a comprehensive view of a disease given a cohort of patients, SNF computes and fuses patient similarity networks obtained from each of their data types separately, taking advantage of the complementarity in the data. We used SNF to combine mRNA expression, DNA methylation and microRNA (miRNA) expression data for five cancer data sets. SNF substantially outperforms single data type analysis and established integrative approaches when identifying cancer subtypes and is effective for predicting survival.
近年来,各种技术的发展使得收集多样化的全基因组数据变得经济实惠。需要计算方法将这些数据结合起来,以创建给定疾病或生物过程的综合视图。相似网络融合(SNF)通过构建每个可用数据类型的样本(例如患者)网络来解决此问题,然后有效地将这些网络融合为一个代表基础数据全貌的网络。例如,为了从一组患者中创建疾病的综合视图,SNF 计算并融合了从每个患者的每种数据类型中分别获得的患者相似性网络,从而利用数据的互补性。我们使用 SNF 组合了五个癌症数据集的 mRNA 表达、DNA 甲基化和 microRNA(miRNA)表达数据。在识别癌症亚型时,SNF 在确定癌症亚型时的表现明显优于单一数据类型分析和已建立的综合方法,并且对于预测生存能力也很有效。
Nat Methods. 2014-1-26
Sci China Life Sci. 2014-10-18
Bioinformatics. 2019-10-1
J Biomed Semantics. 2017-9-20
IEEE/ACM Trans Comput Biol Bioinform. 2017
BMC Syst Biol. 2013-10-16
PLoS Comput Biol. 2012-7-19
BMC Med Genomics. 2020-8-27
Brief Bioinform. 2025-8-31
J Med Internet Res. 2025-8-18
Bioinformatics. 2012-10-9
Nature. 2012-9-23
Nat Biotechnol. 2011-3