文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于基因组尺度聚合数据类型的相似网络融合。

Similarity network fusion for aggregating data types on a genomic scale.

机构信息

1] Genetics and Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada. [2].

1] Genetics and Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada. [2] Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.

出版信息

Nat Methods. 2014 Mar;11(3):333-7. doi: 10.1038/nmeth.2810. Epub 2014 Jan 26.


DOI:10.1038/nmeth.2810
PMID:24464287
Abstract

Recent technologies have made it cost-effective to collect diverse types of genome-wide data. Computational methods are needed to combine these data to create a comprehensive view of a given disease or a biological process. Similarity network fusion (SNF) solves this problem by constructing networks of samples (e.g., patients) for each available data type and then efficiently fusing these into one network that represents the full spectrum of underlying data. For example, to create a comprehensive view of a disease given a cohort of patients, SNF computes and fuses patient similarity networks obtained from each of their data types separately, taking advantage of the complementarity in the data. We used SNF to combine mRNA expression, DNA methylation and microRNA (miRNA) expression data for five cancer data sets. SNF substantially outperforms single data type analysis and established integrative approaches when identifying cancer subtypes and is effective for predicting survival.

摘要

近年来,各种技术的发展使得收集多样化的全基因组数据变得经济实惠。需要计算方法将这些数据结合起来,以创建给定疾病或生物过程的综合视图。相似网络融合(SNF)通过构建每个可用数据类型的样本(例如患者)网络来解决此问题,然后有效地将这些网络融合为一个代表基础数据全貌的网络。例如,为了从一组患者中创建疾病的综合视图,SNF 计算并融合了从每个患者的每种数据类型中分别获得的患者相似性网络,从而利用数据的互补性。我们使用 SNF 组合了五个癌症数据集的 mRNA 表达、DNA 甲基化和 microRNA(miRNA)表达数据。在识别癌症亚型时,SNF 在确定癌症亚型时的表现明显优于单一数据类型分析和已建立的综合方法,并且对于预测生存能力也很有效。

相似文献

[1]
Similarity network fusion for aggregating data types on a genomic scale.

Nat Methods. 2014-1-26

[2]
Inferring microbial interaction networks based on consensus similarity network fusion.

Sci China Life Sci. 2014-10-18

[3]
Using association signal annotations to boost similarity network fusion.

Bioinformatics. 2019-10-1

[4]
Constructing an integrated gene similarity network for the identification of disease genes.

J Biomed Semantics. 2017-9-20

[5]
Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data.

PLoS One. 2016-4-1

[6]
Multi-View Clustering of Microbiome Samples by Robust Similarity Network Fusion and Spectral Clustering.

IEEE/ACM Trans Comput Biol Bioinform. 2017

[7]
Intra-relation reconstruction from inter-relation: miRNA to gene expression.

BMC Syst Biol. 2013-10-16

[8]
Parameter optimization for constructing competing endogenous RNA regulatory network in glioblastoma multiforme and other cancers.

BMC Genomics. 2015

[9]
Uncovering MicroRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma.

PLoS Comput Biol. 2012-7-19

[10]
Constructing cancer patient-specific and group-specific gene networks with multi-omics data.

BMC Med Genomics. 2020-8-27

引用本文的文献

[1]
GCNMF-SDA: predicting snoRNA-disease associations based on graph convolution and non-negative matrix factorization.

Brief Bioinform. 2025-8-31

[2]
Mapping cancer heterogeneity: a consensus network approach to subtypes and pathways.

Brief Bioinform. 2025-8-31

[3]
Application of Multi-Omics Techniques in Aquatic Ecotoxicology: A Review.

Toxics. 2025-7-31

[4]
A review on multi-omics integration for aiding study design of large scale TCGA cancer datasets.

BMC Genomics. 2025-8-22

[5]
Uncovering the Understanding of the Concept of Patient Similarity in Cancer Research and Treatment: Scoping Review.

J Med Internet Res. 2025-8-18

[6]
A technical review of multi-omics data integration methods: from classical statistical to deep generative approaches.

Brief Bioinform. 2025-7-2

[7]
Comparative transcriptomic and genomic analysis of tumor cells in the marginal and center regions of tumor nests in human hepatocellular carcinoma.

Front Cell Dev Biol. 2025-7-16

[8]
BioNeuralNet: A Graph Neural Network based Multi-Omics Network Data Analysis Tool.

ArXiv. 2025-7-27

[9]
Major Problems in Clinical Psychological Science and How to Address them. Introducing a Multimodal Dynamical Network Approach.

Cognit Ther Res. 2024-10

[10]
Multi-omics based and AI-driven drug repositioning for epigenetic therapy in female malignancies.

J Transl Med. 2025-7-25

本文引用的文献

[1]
Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer.

Sci Transl Med. 2013-4-17

[2]
Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment.

PLoS Comput Biol. 2013-3-21

[3]
Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma.

Cancer Cell. 2012-10-16

[4]
Bayesian correlated clustering to integrate multiple datasets.

Bioinformatics. 2012-10-9

[5]
Comprehensive molecular portraits of human breast tumours.

Nature. 2012-9-23

[6]
Comprehensive genomic characterization of squamous cell lung cancers.

Nature. 2012-9-9

[7]
Comprehensive molecular characterization of human colon and rectal cancer.

Nature. 2012-7-18

[8]
The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.

Nature. 2012-4-18

[9]
Protein alterations associated with temozolomide resistance in subclones of human glioblastoma cell lines.

J Neurooncol. 2011-10-7

[10]
Point: Are we prepared for the future doctor visit?

Nat Biotechnol. 2011-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索