Suppr超能文献

系统分析乳腺癌分子预后模型中以挑战为导向的改进。

Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer.

机构信息

Sage Bionetworks, 1100 Fairview Avenue North, MS: M1-C108, Seattle, WA 98109, USA.

出版信息

Sci Transl Med. 2013 Apr 17;5(181):181re1. doi: 10.1126/scitranslmed.3006112.

Abstract

Although molecular prognostics in breast cancer are among the most successful examples of translating genomic analysis to clinical applications, optimal approaches to breast cancer clinical risk prediction remain controversial. The Sage Bionetworks-DREAM Breast Cancer Prognosis Challenge (BCC) is a crowdsourced research study for breast cancer prognostic modeling using genome-scale data. The BCC provided a community of data analysts with a common platform for data access and blinded evaluation of model accuracy in predicting breast cancer survival on the basis of gene expression data, copy number data, and clinical covariates. This approach offered the opportunity to assess whether a crowdsourced community Challenge would generate models of breast cancer prognosis commensurate with or exceeding current best-in-class approaches. The BCC comprised multiple rounds of blinded evaluations on held-out portions of data on 1981 patients, resulting in more than 1400 models submitted as open source code. Participants then retrained their models on the full data set of 1981 samples and submitted up to five models for validation in a newly generated data set of 184 breast cancer patients. Analysis of the BCC results suggests that the best-performing modeling strategy outperformed previously reported methods in blinded evaluations; model performance was consistent across several independent evaluations; and aggregating community-developed models achieved performance on par with the best-performing individual models.

摘要

虽然分子预后在乳腺癌中是将基因组分析转化为临床应用最成功的例子之一,但乳腺癌临床风险预测的最佳方法仍存在争议。Sage Bionetworks-DREAM 乳腺癌预后建模挑战赛(BCC)是一项使用基因组规模数据进行乳腺癌预后建模的众包研究。BCC 为数据分析人员提供了一个共同的平台,用于访问数据和在基因表达数据、拷贝数数据和临床协变量的基础上,对模型预测乳腺癌生存的准确性进行盲法评估。这种方法提供了机会来评估众包社区挑战赛是否会生成与当前最佳方法相当或超过的乳腺癌预后模型。BCC 包括对 1981 名患者的数据集进行多次盲法评估,结果提交了 1400 多个作为开源代码的模型。然后,参与者在包含 1981 个样本的完整数据集上重新训练他们的模型,并在新生成的包含 184 名乳腺癌患者的数据集上提交了最多五个模型进行验证。对 BCC 结果的分析表明,表现最好的建模策略在盲法评估中优于之前报告的方法;模型性能在几个独立评估中是一致的;并且汇集社区开发的模型的性能与表现最好的单个模型相当。

相似文献

3
Mixture classification model based on clinical markers for breast cancer prognosis.基于临床标志物的乳腺癌预后混合分类模型。
Artif Intell Med. 2010 Feb-Mar;48(2-3):129-37. doi: 10.1016/j.artmed.2009.07.008. Epub 2009 Dec 14.

引用本文的文献

6
Big Data/AI in Neurocritical Care: Maybe/Summary.大数据/人工智能在神经重症监护中的应用:也许/总结。
Neurocrit Care. 2022 Aug;37(Suppl 2):166-169. doi: 10.1007/s12028-021-01422-x. Epub 2021 Dec 29.

本文引用的文献

3
A large-scale evaluation of computational protein function prediction.大规模计算蛋白质功能预测评估。
Nat Methods. 2013 Mar;10(3):221-7. doi: 10.1038/nmeth.2340. Epub 2013 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验