Suppr超能文献

铜绿假单胞菌 AmpR 在预先接触亚抑菌浓度抗生素时对β-内酰胺类和非β-内酰胺类药物短暂交叉耐药性的作用。

Role of Pseudomonas aeruginosa AmpR on β-lactam and non-β-lactam transient cross-resistance upon pre-exposure to subinhibitory concentrations of antibiotics.

机构信息

Department of Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.

Department of Biological Sciences, College of Arts and Sciences, Florida International University, Miami, FL, USA.

出版信息

J Med Microbiol. 2014 Apr;63(Pt 4):544-555. doi: 10.1099/jmm.0.070185-0. Epub 2014 Jan 25.

Abstract

Pseudomonas aeruginosa is one of the most dreaded opportunistic pathogens accounting for 10 % of hospital-acquired infections, with a 50 % mortality rate in chronically ill patients. The increased prevalence of drug-resistant isolates is a major cause of concern. Resistance in P. aeruginosa is mediated by various mechanisms, some of which are shared among different classes of antibiotics and which raise the possibility of cross-resistance. The goal of this study was to explore the effect of subinhibitory concentrations (SICs) of clinically relevant antibiotics and the role of a global antibiotic resistance and virulence regulator, AmpR, in developing cross-resistance. We investigated the induction of transient cross-resistance in P. aeruginosa PAO1 upon exposure to SICs of antibiotics. Pre-exposure to carbapenems, specifically imipenem, even at 3 ng ml(-1), adversely affected the efficacy of clinically used penicillins and cephalosporins. The high β-lactam resistance was due to elevated expression of both ampC and ampR, encoding a chromosomal β-lactamase and its regulator, respectively. Differences in the susceptibility of ampR and ampC mutants suggested non-AmpC-mediated regulation of β-lactam resistance by AmpR. The increased susceptibility of P. aeruginosa in the absence of ampR to various antibiotics upon SIC exposure suggests that AmpR plays a major role in the cross-resistance. AmpR was shown previously to be involved in resistance to quinolones by regulating MexEF-OprN efflux pump. The data here further indicate the role of AmpR in cross-resistance between quinolones and aminoglycosides. This was confirmed using quantitative PCR, where expression of the mexEF efflux pump was further induced by ciprofloxacin and tobramycin, its substrate and a non-substrate, respectively, in the absence of ampR. The data presented here highlight the intricate cross-regulation of antibiotic resistance pathways at SICs of antibiotics and the need for careful assessment of the order of antibiotic regimens as this may have dire consequences. Targeting a global regulator such as AmpR that connects diverse pathways is a feasible therapeutic approach to combat P. aeruginosa pathogenesis.

摘要

铜绿假单胞菌是最令人恐惧的机会性病原体之一,占医院获得性感染的 10%,在慢性疾病患者中的死亡率为 50%。耐药分离株的增加是一个主要的关注原因。铜绿假单胞菌的耐药性是由多种机制介导的,其中一些机制在不同类别的抗生素之间共享,并增加了交叉耐药的可能性。本研究的目的是探讨临床相关抗生素的亚抑菌浓度(SIC)和全局抗生素耐药性和毒力调节剂 AmpR 在产生交叉耐药性方面的作用。我们研究了铜绿假单胞菌 PAO1 暴露于抗生素 SIC 时诱导短暂交叉耐药的情况。预先接触碳青霉烯类抗生素,特别是亚胺培南,即使浓度低至 3ng/ml,也会对临床使用的青霉素类和头孢菌素类药物的疗效产生不利影响。高β-内酰胺耐药性是由于 AmpC 和 AmpR 的表达均升高所致,AmpC 和 AmpR 分别编码染色体β-内酰胺酶及其调节剂。AmpR 和 AmpC 突变体的敏感性差异表明 AmpR 通过非 AmpC 机制调节β-内酰胺耐药性。在 SIC 暴露下,缺乏 AmpR 的铜绿假单胞菌对各种抗生素的敏感性增加表明 AmpR 在交叉耐药中起主要作用。先前的研究表明,AmpR 通过调节 MexEF-OprN 外排泵参与喹诺酮类药物的耐药性。这里的数据进一步表明 AmpR 在喹诺酮类药物和氨基糖苷类药物之间的交叉耐药中的作用。这通过定量 PCR 得到证实,在没有 AmpR 的情况下,环丙沙星和妥布霉素(其底物和非底物)分别进一步诱导 MexEF 外排泵的表达。这里提出的研究结果强调了抗生素 SIC 下抗生素耐药途径的复杂交叉调控,以及需要仔细评估抗生素方案的顺序,因为这可能会产生严重后果。针对 AmpR 等连接多种途径的全局调节剂是对抗铜绿假单胞菌发病机制的可行治疗方法。

相似文献

2
The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes.
PLoS One. 2012;7(3):e34067. doi: 10.1371/journal.pone.0034067. Epub 2012 Mar 29.
3
Structural and functional characterization of Pseudomonas aeruginosa global regulator AmpR.
J Bacteriol. 2014 Nov;196(22):3890-902. doi: 10.1128/JB.01997-14. Epub 2014 Sep 2.
4
Co-regulation of {beta}-lactam resistance, alginate production and quorum sensing in Pseudomonas aeruginosa.
J Med Microbiol. 2011 Feb;60(Pt 2):147-156. doi: 10.1099/jmm.0.021600-0. Epub 2010 Oct 21.
5
Pseudomonas aeruginosa β-lactamase induction requires two permeases, AmpG and AmpP.
BMC Microbiol. 2010 Dec 30;10:328. doi: 10.1186/1471-2180-10-328.
6
Fluorescence Assessment of the AmpR-Signaling Network of to Exposure to β-Lactam Antibiotics.
ACS Chem Biol. 2020 May 15;15(5):1184-1194. doi: 10.1021/acschembio.9b00875. Epub 2020 Feb 10.
9
Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay.
Antimicrob Agents Chemother. 2001 Jul;45(7):1964-71. doi: 10.1128/AAC.45.7.1964-1971.2001.
10
Changes to its peptidoglycan-remodeling enzyme repertoire modulate β-lactam resistance in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2013 Jul;57(7):3078-84. doi: 10.1128/AAC.00268-13. Epub 2013 Apr 22.

引用本文的文献

2
Identification and characterisation of G-quadruplex DNA-forming sequences in the genome.
RSC Chem Biol. 2022 Nov 15;4(1):94-100. doi: 10.1039/d2cb00205a. eCollection 2023 Jan 4.
3
Spectinomycin resistance in is due to its rRNA target but also relies on cell-wall recycling and purine biosynthesis.
Front Microbiol. 2022 Aug 31;13:988110. doi: 10.3389/fmicb.2022.988110. eCollection 2022.
5
Fluorescence Assessment of the AmpR-Signaling Network of to Exposure to β-Lactam Antibiotics.
ACS Chem Biol. 2020 May 15;15(5):1184-1194. doi: 10.1021/acschembio.9b00875. Epub 2020 Feb 10.
6
Within-Host Adaptation Mediated by Intergenic Evolution in Pseudomonas aeruginosa.
Genome Biol Evol. 2019 May 1;11(5):1385-1397. doi: 10.1093/gbe/evz083.
8
Identifying and exploiting genes that potentiate the evolution of antibiotic resistance.
Nat Ecol Evol. 2018 Jun;2(6):1033-1039. doi: 10.1038/s41559-018-0547-x. Epub 2018 Apr 23.
9
Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA).
World J Emerg Surg. 2016 Jul 15;11:33. doi: 10.1186/s13017-016-0089-y. eCollection 2016.
10
Characterization of a Carbapenem-Hydrolyzing Enzyme, PoxB, in Pseudomonas aeruginosa PAO1.
Antimicrob Agents Chemother. 2015 Nov 30;60(2):936-45. doi: 10.1128/AAC.01807-15. Print 2016 Feb.

本文引用的文献

2
Multidrug-resistant Gram-negative bacterial infections: are you ready for the challenge?
Curr Clin Pharmacol. 2014 Feb;9(1):27-38. doi: 10.2174/15748847113089990062.
3
Clinical relevance of the ESKAPE pathogens.
Expert Rev Anti Infect Ther. 2013 Mar;11(3):297-308. doi: 10.1586/eri.13.12.
4
β-Lactam plus aminoglycoside or fluoroquinolone combination versus β-lactam monotherapy for Pseudomonas aeruginosa infections: a meta-analysis.
Int J Antimicrob Agents. 2013 Apr;41(4):301-10. doi: 10.1016/j.ijantimicag.2012.12.006. Epub 2013 Feb 12.
5
6
Study on drug resistance of Pseudomonas aeruginosa plasmid-mediated AmpC β-lactamase.
Mol Med Rep. 2013 Feb;7(2):664-8. doi: 10.3892/mmr.2012.1235. Epub 2012 Dec 14.
7
MexXY multidrug efflux system of Pseudomonas aeruginosa.
Front Microbiol. 2012 Nov 28;3:408. doi: 10.3389/fmicb.2012.00408. eCollection 2012.
8
A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence.
Nucleic Acids Res. 2013 Jan 7;41(1):1-20. doi: 10.1093/nar/gks1039. Epub 2012 Nov 11.
9
Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones.
Antimicrob Agents Chemother. 2012 Dec;56(12):6349-57. doi: 10.1128/AAC.01388-12. Epub 2012 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验