Department of Zoology, University of Oxford, Oxford, UK.
Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, Spain.
Nat Ecol Evol. 2018 Jun;2(6):1033-1039. doi: 10.1038/s41559-018-0547-x. Epub 2018 Apr 23.
There is an urgent need to develop novel approaches for predicting and preventing the evolution of antibiotic resistance. Here, we show that the ability to evolve de novo resistance to a clinically important β-lactam antibiotic, ceftazidime, varies drastically across the genus Pseudomonas. This variation arises because strains possessing the ampR global transcriptional regulator evolve resistance at a high rate. This does not arise because of mutations in ampR. Instead, this regulator potentiates evolution by allowing mutations in conserved peptidoglycan biosynthesis genes to induce high levels of β-lactamase expression. Crucially, blocking this evolutionary pathway by co-administering ceftazidime with the β-lactamase inhibitor avibactam can be used to eliminate pathogenic P. aeruginosa populations before they can evolve resistance. In summary, our study shows that identifying potentiator genes that act as evolutionary catalysts can be used to both predict and prevent the evolution of antibiotic resistance.
迫切需要开发新的方法来预测和预防抗生素耐药性的进化。在这里,我们表明,对一种临床上重要的β-内酰胺抗生素头孢他啶从头产生耐药性的能力在假单胞菌属中差异很大。这种变异是因为具有 ampR 全局转录调节剂的菌株以高速度进化出抗性。这不是因为 ampR 中的突变。相反,该调节剂通过允许保守的肽聚糖生物合成基因中的突变诱导高水平的β-内酰胺酶表达,从而促进进化。至关重要的是,通过与β-内酰胺酶抑制剂阿维巴坦联合使用来阻断这种进化途径,可以在它们产生耐药性之前消除致病性铜绿假单胞菌种群。总之,我们的研究表明,鉴定作为进化催化剂的增效基因可用于预测和预防抗生素耐药性的进化。