Gago Jorge, Martínez-Núñez Lourdes, Landín Mariana, Flexas Jaume, Gallego Pedro P
Applied Plant and Soil Biology, Faculty of Biology, University of Vigo, Vigo, Spain ; Laboratori de Fisiologia Vegetal, Departament de Biologia, Universitat de les Illes Balears - Instituto Mediterráneo de Estudios Avanzados (UIB-IMEDEA), Palma de Mallorca, Spain.
Applied Plant and Soil Biology, Faculty of Biology, University of Vigo, Vigo, Spain.
PLoS One. 2014 Jan 20;9(1):e85989. doi: 10.1371/journal.pone.0085989. eCollection 2014.
Plant acclimation is a highly complex process, which cannot be fully understood by analysis at any one specific level (i.e. subcellular, cellular or whole plant scale). Various soft-computing techniques, such as neural networks or fuzzy logic, were designed to analyze complex multivariate data sets and might be used to model large such multiscale data sets in plant biology.
In this study we assessed the effectiveness of applying neuro-fuzzy logic to modeling the effects of light intensities and sucrose content/concentration in the in vitro culture of kiwifruit on plant acclimation, by modeling multivariate data from 14 parameters at different biological scales of organization. The model provides insights through application of 14 sets of straightforward rules and indicates that plants with lower stomatal aperture areas and higher photoinhibition and photoprotective status score best for acclimation. The model suggests the best condition for obtaining higher quality acclimatized plantlets is the combination of 2.3% sucrose and photonflux of 122-130 µmol m(-2) s(-1).
Our results demonstrate that artificial intelligence models are not only successful in identifying complex non-linear interactions among variables, by integrating large-scale data sets from different levels of biological organization in a holistic plant systems-biology approach, but can also be used successfully for inferring new results without further experimental work.
植物驯化是一个高度复杂的过程,在任何一个特定层面(即亚细胞、细胞或整株植物尺度)进行分析都无法完全理解这一过程。各种软计算技术,如神经网络或模糊逻辑,旨在分析复杂的多变量数据集,可用于对植物生物学中的大型多尺度数据集进行建模。
在本研究中,我们通过对来自不同生物组织尺度的14个参数的多变量数据进行建模,评估了应用神经模糊逻辑对猕猴桃离体培养中光强和蔗糖含量/浓度对植物驯化的影响进行建模的有效性。该模型通过应用14组简单规则提供了见解,并表明气孔孔径面积较小、光抑制和光保护状态较高的植物最适合驯化。该模型表明,获得高质量驯化苗的最佳条件是2.3%蔗糖和122 - 130 μmol m(-2) s(-1)的光子通量的组合。
我们的结果表明,人工智能模型不仅能够通过以整体植物系统生物学方法整合来自不同生物组织水平的大规模数据集,成功识别变量之间复杂的非线性相互作用,而且还可以在无需进一步实验工作的情况下成功用于推断新结果。