Arid and Oases Cropping Laboratory, Arid Lands Institute (IRA), 4119, Medenine, Tunisia.
National Institute of Agronomy of Tunis, 43 Charles Nicolle, 1082, Tunis, Tunisia.
BMC Plant Biol. 2022 Jul 5;22(1):324. doi: 10.1186/s12870-022-03674-x.
Contamination-free culture is a prerequisite for the success of in vitro - based plant biotechnology. Aseptic initiation is an extremely strenuous stride, particularly in woody species. Meanwhile, over-sterilization is potentially detrimental to plant tissue. The recent rise of machine learning algorithms in plant tissue culture proposes an advanced interpretive tool for the combinational effect of influential factors for such in vitro - based steps.
A multilayer perceptron (MLP) model of artificial neural network (ANN) was implemented with four inputs, three sterilizing chemicals at various concentrations and the immersion time, and two outputs, disinfection efficiency (DE) and negative disinfection effect (NDE), intending to assess twenty-seven disinfection procedures of Pistacia vera L. seeds. Mercury chloride (HgCl; 0.05-0.2%; 5-15 min) appears the most effective with 100% DE, then hydrogen peroxide (HO; 5.25-12.25%; 10-30 min) with 66-100% DE, followed by 27-77% DE for sodium hypochlorite (NaOCl; 0.54-1.26% w/v; 10-30 min). Concurrently, NDE was detected, including chlorosis, hard embryo germination, embryo deformation, and browning tissue, namely, a low repercussion with NaOCl (0-14%), a moderate impact with HO (6-46%), and pronounced damage with HgCl (22-100%). Developed ANN showed R values of 0.9658, 0.9653, 0.8937, and 0.9454 for training, validation, testing, and all sets, respectively, which revealed the uprightness of the model. Subsequently, the model was linked to multi-objective genetic algorithm (MOGA) which proposed an optimized combination of 0.56% NaOCl, 12.23% HO, and 0.068% HgCl for 5.022 min. The validation assay reflects the high utility and accuracy of the model with maximum DE (100%) and lower phytotoxicity (7.1%).
In one more case, machine learning algorithms emphasized their ability to resolve commonly encountered problems. The current successful implementation of MLP-MOGA inspires its application for more complicated plant tissue culture processes.
无污染培养是体外植物生物技术成功的前提。无菌启动是一个极其艰巨的步骤,特别是在木本物种中。同时,过度灭菌可能对植物组织有害。最近,机器学习算法在植物组织培养中的兴起,为评估基于体外的步骤的影响因素组合效应提供了一种先进的解释工具。
我们实施了一个人工神经网络(ANN)的多层感知器(MLP)模型,其中包含四个输入,三种不同浓度的灭菌化学物质和浸渍时间,以及两个输出,消毒效率(DE)和负消毒效应(NDE),旨在评估 27 种开心果(Pistacia vera L.)种子的消毒程序。氯化汞(HgCl;0.05-0.2%;5-15 分钟)的效果最为显著,DE 达到 100%,其次是过氧化氢(HO;5.25-12.25%;10-30 分钟),DE 达到 66-100%,次氯酸钠(NaOCl;0.54-1.26%w/v;10-30 分钟)的 DE 为 27-77%。同时,检测到了 NDE,包括黄化、硬胚萌发、胚变形和组织褐变,即低浓度的次氯酸钠(0-14%)影响较小,中浓度的过氧化氢(6-46%)影响中等,高浓度的氯化汞(22-100%)影响较大。开发的 ANN 分别对训练、验证、测试和所有数据集的 R 值为 0.9658、0.9653、0.8937 和 0.9454,这表明了模型的正确性。随后,该模型与多目标遗传算法(MOGA)相连,MOGA 提出了一种优化的组合,即 0.56%的次氯酸钠、12.23%的过氧化氢和 0.068%的氯化汞,作用时间为 5.022 分钟。验证试验反映了模型的高实用性和准确性,DE 达到最大值(100%),植物毒性较低(7.1%)。
机器学习算法再次强调了它们解决常见问题的能力。目前 MLP-MOGA 的成功实施激发了其在更复杂的植物组织培养过程中的应用。