Suppr超能文献

外生死亡率对衰老进化的影响:一种随机建模方法。

Effects of extrinsic mortality on the evolution of aging: a stochastic modeling approach.

机构信息

Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California, United States of America.

Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, United States of America.

出版信息

PLoS One. 2014 Jan 21;9(1):e86602. doi: 10.1371/journal.pone.0086602. eCollection 2014.

Abstract

The evolutionary theories of aging are useful for gaining insights into the complex mechanisms underlying senescence. Classical theories argue that high levels of extrinsic mortality should select for the evolution of shorter lifespans and earlier peak fertility. Non-classical theories, in contrast, posit that an increase in extrinsic mortality could select for the evolution of longer lifespans. Although numerous studies support the classical paradigm, recent data challenge classical predictions, finding that high extrinsic mortality can select for the evolution of longer lifespans. To further elucidate the role of extrinsic mortality in the evolution of aging, we implemented a stochastic, agent-based, computational model. We used a simulated annealing optimization approach to predict which model parameters predispose populations to evolve longer or shorter lifespans in response to increased levels of predation. We report that longer lifespans evolved in the presence of rising predation if the cost of mating is relatively high and if energy is available in excess. Conversely, we found that dramatically shorter lifespans evolved when mating costs were relatively low and food was relatively scarce. We also analyzed the effects of increased predation on various parameters related to density dependence and energy allocation. Longer and shorter lifespans were accompanied by increased and decreased investments of energy into somatic maintenance, respectively. Similarly, earlier and later maturation ages were accompanied by increased and decreased energetic investments into early fecundity, respectively. Higher predation significantly decreased the total population size, enlarged the shared resource pool, and redistributed energy reserves for mature individuals. These results both corroborate and refine classical predictions, demonstrating a population-level trade-off between longevity and fecundity and identifying conditions that produce both classical and non-classical lifespan effects.

摘要

衰老的进化理论有助于深入了解衰老的复杂机制。经典理论认为,高水平的外在死亡率应该选择较短的寿命和较早的峰值生育能力。相比之下,非经典理论认为,外在死亡率的增加可能会选择更长的寿命。尽管许多研究支持经典范式,但最近的数据挑战了经典预测,发现高外在死亡率可以选择更长的寿命。为了进一步阐明外在死亡率在衰老进化中的作用,我们实施了一个随机的、基于代理的计算模型。我们使用模拟退火优化方法来预测哪些模型参数会使种群倾向于在增加捕食水平时进化出更长或更短的寿命。我们报告说,如果交配成本相对较高,并且有多余的能量可用,那么在捕食率上升的情况下,寿命会更长。相反,如果交配成本相对较低,食物相对稀缺,我们发现寿命会显著缩短。我们还分析了增加捕食对与密度依赖和能量分配相关的各种参数的影响。寿命更长和更短伴随着能量投入到身体维持的增加和减少,分别。同样,成熟年龄更早和更晚伴随着早期生育力的能量投入增加和减少,分别。更高的捕食率显著降低了总种群规模,扩大了共享资源池,并重新分配了成熟个体的能量储备。这些结果既证实了经典预测,又细化了经典预测,表明在长寿和繁殖力之间存在群体水平的权衡,并确定了产生经典和非经典寿命效应的条件。

相似文献

1
Effects of extrinsic mortality on the evolution of aging: a stochastic modeling approach.
PLoS One. 2014 Jan 21;9(1):e86602. doi: 10.1371/journal.pone.0086602. eCollection 2014.
2
Revamping the evolutionary theories of aging.
Ageing Res Rev. 2019 Nov;55:100947. doi: 10.1016/j.arr.2019.100947. Epub 2019 Aug 23.
3
The evolution of senescence and post-reproductive lifespan in guppies (Poecilia reticulata).
PLoS Biol. 2006 Jan;4(1):e7. doi: 10.1371/journal.pbio.0040007.
4
Effect of extrinsic mortality on the evolution of senescence in guppies.
Nature. 2004 Oct 28;431(7012):1095-9. doi: 10.1038/nature02936.
5
Theory and associated phenomenology for intrinsic mortality arising from natural selection.
PLoS One. 2017 Mar 29;12(3):e0173677. doi: 10.1371/journal.pone.0173677. eCollection 2017.
6
Growing more positive with age: The relationship between reproduction and survival in aging flies.
Exp Gerontol. 2017 Apr;90:34-42. doi: 10.1016/j.exger.2017.01.016. Epub 2017 Jan 22.
7
Parallel evolution of senescence in annual fishes in response to extrinsic mortality.
BMC Evol Biol. 2013 Apr 3;13:77. doi: 10.1186/1471-2148-13-77.
8
9
The evolution of senescence in fish.
Mech Ageing Dev. 2002 Apr;123(7):773-89. doi: 10.1016/s0047-6374(01)00423-7.
10
Effects of fluctuating temperature and food availability on reproduction and lifespan.
Exp Gerontol. 2016 Dec 15;86:62-72. doi: 10.1016/j.exger.2016.06.010. Epub 2016 Jun 27.

引用本文的文献

1
Misalignment of plastic and evolutionary responses of lifespan to novel carbohydrate diets.
R Soc Open Sci. 2024 Jan 17;11(1):231732. doi: 10.1098/rsos.231732. eCollection 2024 Jan.
2
Telomeres and telomerase: active but complex players in life-history decisions.
Biogerontology. 2024 Apr;25(2):205-226. doi: 10.1007/s10522-023-10060-z. Epub 2023 Aug 23.
3
Expanding evolutionary theories of ageing to better account for symbioses and interactions throughout the Web of Life.
Ageing Res Rev. 2023 Aug;89:101982. doi: 10.1016/j.arr.2023.101982. Epub 2023 Jun 13.
4
Current Trends and Approaches to the Search for Genetic Determinants of Aging and Longevity.
Russ J Genet. 2022;58(12):1427-1443. doi: 10.1134/S1022795422120067. Epub 2022 Dec 28.
5
Nontraditional systems in aging research: an update.
Cell Mol Life Sci. 2021 Feb;78(4):1275-1304. doi: 10.1007/s00018-020-03658-w. Epub 2020 Oct 9.
6
Somatic maintenance impacts the evolution of mutation rate.
BMC Evol Biol. 2019 Aug 23;19(1):172. doi: 10.1186/s12862-019-1496-y.
7
Ageing Throughout History: The Evolution of Human Lifespan.
J Mol Evol. 2020 Jan;88(1):57-65. doi: 10.1007/s00239-019-09896-2. Epub 2019 Jun 13.
8
Evolutionary ecology of aging: time to reconcile field and laboratory research.
Ecol Evol. 2016 Mar 28;6(9):2988-3000. doi: 10.1002/ece3.2093. eCollection 2016 May.
9
Principles of alternative gerontology.
Aging (Albany NY). 2016 Apr;8(4):589-602. doi: 10.18632/aging.100931.
10
Energy excess is the main cause of accelerated aging of mammals.
Oncotarget. 2015 May 30;6(15):12909-19. doi: 10.18632/oncotarget.4271.

本文引用的文献

1
DOES INCREASED MORTALITY FAVOR THE EVOLUTION OF MORE RAPID SENESCENCE?
Evolution. 1993 Jun;47(3):877-887. doi: 10.1111/j.1558-5646.1993.tb01241.x.
2
NATURAL GENETIC VARIATION OF LIFE SPAN, REPRODUCTION, AND JUVENILE GROWTH IN DAPHNIA.
Evolution. 1999 Dec;53(6):1744-1756. doi: 10.1111/j.1558-5646.1999.tb04559.x.
3
The hallmarks of aging.
Cell. 2013 Jun 6;153(6):1194-217. doi: 10.1016/j.cell.2013.05.039.
4
How ageing processes influence cancer.
Nat Rev Cancer. 2013 May;13(5):357-65. doi: 10.1038/nrc3497.
6
Parallel evolution of senescence in annual fishes in response to extrinsic mortality.
BMC Evol Biol. 2013 Apr 3;13:77. doi: 10.1186/1471-2148-13-77.
7
Aging in sexual and obligately asexual clones of from temporary ponds.
J Plankton Res. 2013 Mar;35(2):253-259. doi: 10.1093/plankt/fbt008. Epub 2013 Feb 5.
8
How evolving heterogeneity distributions of resource allocation strategies shape mortality patterns.
PLoS Comput Biol. 2013;9(1):e1002825. doi: 10.1371/journal.pcbi.1002825. Epub 2013 Jan 17.
9
Aging: evolution of life span revisited.
Curr Biol. 2012 Nov 20;22(22):R947-9. doi: 10.1016/j.cub.2012.09.029.
10
Evolution. Getting to the root of aging.
Science. 2012 Nov 2;338(6107):618-9. doi: 10.1126/science.1226467.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验