Yang Xu, Zhang Rongyu, Bie Xiaofei, Wang Chunzhong, Li Malin, Chen Nan, Wei Yingjin, Chen Gang, Du Fei
Key Laboratory of Physics and Technology, for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, P.R. China.
State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P.R. China.
Chem Asian J. 2015 Nov;10(11):2460-6. doi: 10.1002/asia.201500483. Epub 2015 Aug 12.
Tin-iron-carbon nanocomposite is successfully prepared by a sol-gel method followed by a chemical vapor deposition (CVD) process with acetylene gas as the carbon source. The structural properties, morphology, and electrochemical performances of the nanocomposite are comprehensively studied in comparison with those properties of tin-carbon and iron-carbon nanocomposites. Sheet-like carbon architecture and different carbon contents are induced thanks to the catalytic effect of iron during CVD. Among three nanocomposites, tin-iron-carbon demonstrates the highest reversible capacity of 800 mA h g(-1) with 96.9% capacity retention after 50 cycles. It also exhibits the best rate capability with a discharge capacity of 420 mA h g(-1) at a current density of 1000 mA g(-1). This enhanced performance is strongly related to the carbon morphology and content, which can not only accommodate the large volume change, but also improve the electronic conductivity of the nanocomposite. Hence, the tin-iron-carbon nanocomposite is expected to be a promising anode for lithium-ion batteries.
通过溶胶-凝胶法,随后以乙炔气体作为碳源采用化学气相沉积(CVD)工艺成功制备了锡-铁-碳纳米复合材料。与锡-碳和铁-碳纳米复合材料的性能相比,对该纳米复合材料的结构特性、形态和电化学性能进行了全面研究。由于在CVD过程中铁的催化作用,诱导出了片状碳结构和不同的碳含量。在三种纳米复合材料中,锡-铁-碳表现出最高的可逆容量,为800 mA h g⁻¹,在50次循环后容量保持率为96.9%。在1000 mA g⁻¹的电流密度下,其放电容量为420 mA h g⁻¹,还表现出最佳的倍率性能。这种增强的性能与碳的形态和含量密切相关,碳不仅可以适应大的体积变化,还能提高纳米复合材料的电子导电性。因此,锡-铁-碳纳米复合材料有望成为一种有前景的锂离子电池负极材料。