Suppr超能文献

骨颈皮质中孔隙率、孔径和皮质厚度对超声导波传播的影响:一项模拟研究。

Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):302-13. doi: 10.1109/TUFFC.2014.6722615.

Abstract

The femoral neck is a common fracture site in elderly people. The cortical shell is thought to be the major contributor to the mechanical competence of the femoral neck, but its microstructural parameters are not sufficiently accessible under in vivo conditions with current X-ray-based methods. To systematically investigate the influences of pore size, porosity, and thickness of the femoral neck cortex on the propagation of ultrasound, we developed 96 different bone models (combining 6 different pore sizes with 4 different porosities and 4 different thicknesses) and simulated the ultrasound propagation using a finite-difference time-domain algorithm. The simulated single-element emitter and receiver array consisting of 16 elements (8 inferior and 8 superior) were placed at anterior and posterior sides of the bone, respectively (transverse transmission). From each simulation, we analyzed the waveform collected by each of the inferior receiver elements for the one with the shortest time of flight. The first arriving signal of this waveform, which is associated with the wave traveling through the cortical shell, was then evaluated for its three different waveform characteristics (TOF: time point of the first point of inflection of the received signal, Δt: difference between the time point at which the signal first crosses the zero baseline and TOF, and A: amplitude of the first extreme of the first arriving signal). From the analyses of these waveform characteristics, we were able to develop multivariate models to predict pore size, porosity, and cortical thickness, corresponding to the 96 different bone models, with remaining errors in the range of 50 μm for pore size, 1.5% for porosity, and 0.17 mm for cortical thickness.

摘要

股骨颈是老年人常见的骨折部位。皮质骨壳被认为是股骨颈力学性能的主要贡献者,但目前基于 X 射线的方法在体内条件下无法充分获得其微观结构参数。为了系统研究股骨颈皮质的孔径、孔隙率和厚度对超声传播的影响,我们开发了 96 种不同的骨模型(结合 6 种不同的孔径、4 种不同的孔隙率和 4 种不同的厚度),并使用有限差分时域算法模拟了超声传播。模拟的单元素发射器和接收器阵列由 16 个元素(8 个下部和 8 个上部)组成,分别放置在骨的前侧和后侧(横向传输)。从每个模拟中,我们分析了每个下部接收器元件收集的波形,以找到飞行时间最短的波形。然后,对该波形的第一个到达信号进行评估,以获得其三个不同的波形特征(TOF:接收信号的第一个拐点的时间点、Δt:信号首次穿过零基线与 TOF 之间的时间差,以及 A:第一个到达信号的第一个极值的幅度)。通过对这些波形特征的分析,我们能够开发出多元模型来预测孔径、孔隙率和皮质厚度,对应于 96 种不同的骨模型,孔径的剩余误差在 50μm 范围内,孔隙率的剩余误差在 1.5%范围内,皮质厚度的剩余误差在 0.17mm 范围内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验