IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Sep;69(9):2630-2637. doi: 10.1109/TUFFC.2022.3192224. Epub 2022 Aug 26.
Transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) enables the noninvasive treatment of the deep brain. This capacity relies on the ability to focus acoustic energy through the in-tact skull, a feat that requires accurate estimates of the acoustic velocity in individual patient skulls. In current practice, these estimates are generated using a pretreatment computed tomography (CT) scan and then registered to a magnetic resonance (MR) dataset on the day of the treatment. Treatment safety and efficacy can be improved by eliminating the need to register the CT data to the MR images and by improving the accuracy of acoustic velocity measurements. In this study, we examine the capacity of MR to supplement or replace CT as a means of estimating velocity in the skull. We find that MR can predict velocity with less but comparable accuracy to CT. We then use micro-CT imaging to better understand the limitations of Hounsfield unit (HU)-based estimates of velocity, demonstrating that the macrostructure of pores in the skull contributes to the acoustic velocity of the bone. We find evidence that detailed T2 measurements provide information about pore macrostructure similar to the information obtained with micro-CT, offering a potential clinical mechanism for improving patient-specific estimates of acoustic velocity in the human skull.
经颅磁共振引导聚焦超声(tcMRgFUS)可实现对大脑深部组织的非侵入性治疗。这种能力依赖于通过完整颅骨聚焦声能的能力,而要实现这一点则需要对个体患者颅骨中的声速进行准确估计。在当前的实践中,这些估计是通过预处理计算机断层扫描(CT)扫描生成的,然后在治疗当天将其与磁共振(MR)数据集配准。通过消除将 CT 数据配准到 MR 图像的需求以及提高声速测量的准确性,可以提高治疗的安全性和疗效。在这项研究中,我们研究了 MR 补充或替代 CT 来估计颅骨中速度的能力。我们发现,MR 可以在精度稍低但可比的情况下预测速度。然后,我们使用微 CT 成像更好地了解基于 Hounsfield 单位(HU)的速度估计的局限性,证明颅骨中孔隙的宏观结构会影响骨的声速。我们有证据表明,详细的 T2 测量提供了关于孔隙宏观结构的信息,与使用微 CT 获得的信息类似,这为改善人体颅骨中特定于患者的声速估计提供了一种潜在的临床机制。