Suppr超能文献

改善经颅声靶向:基于 CT 的速度估计的局限性和 MR 的作用。

Improving Transcranial Acoustic Targeting: The Limits of CT-Based Velocity Estimates and the Role of MR.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Sep;69(9):2630-2637. doi: 10.1109/TUFFC.2022.3192224. Epub 2022 Aug 26.

Abstract

Transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) enables the noninvasive treatment of the deep brain. This capacity relies on the ability to focus acoustic energy through the in-tact skull, a feat that requires accurate estimates of the acoustic velocity in individual patient skulls. In current practice, these estimates are generated using a pretreatment computed tomography (CT) scan and then registered to a magnetic resonance (MR) dataset on the day of the treatment. Treatment safety and efficacy can be improved by eliminating the need to register the CT data to the MR images and by improving the accuracy of acoustic velocity measurements. In this study, we examine the capacity of MR to supplement or replace CT as a means of estimating velocity in the skull. We find that MR can predict velocity with less but comparable accuracy to CT. We then use micro-CT imaging to better understand the limitations of Hounsfield unit (HU)-based estimates of velocity, demonstrating that the macrostructure of pores in the skull contributes to the acoustic velocity of the bone. We find evidence that detailed T2 measurements provide information about pore macrostructure similar to the information obtained with micro-CT, offering a potential clinical mechanism for improving patient-specific estimates of acoustic velocity in the human skull.

摘要

经颅磁共振引导聚焦超声(tcMRgFUS)可实现对大脑深部组织的非侵入性治疗。这种能力依赖于通过完整颅骨聚焦声能的能力,而要实现这一点则需要对个体患者颅骨中的声速进行准确估计。在当前的实践中,这些估计是通过预处理计算机断层扫描(CT)扫描生成的,然后在治疗当天将其与磁共振(MR)数据集配准。通过消除将 CT 数据配准到 MR 图像的需求以及提高声速测量的准确性,可以提高治疗的安全性和疗效。在这项研究中,我们研究了 MR 补充或替代 CT 来估计颅骨中速度的能力。我们发现,MR 可以在精度稍低但可比的情况下预测速度。然后,我们使用微 CT 成像更好地了解基于 Hounsfield 单位(HU)的速度估计的局限性,证明颅骨中孔隙的宏观结构会影响骨的声速。我们有证据表明,详细的 T2 测量提供了关于孔隙宏观结构的信息,与使用微 CT 获得的信息类似,这为改善人体颅骨中特定于患者的声速估计提供了一种潜在的临床机制。

相似文献

1
2
Acoustic Attenuation: Multifrequency Measurement and Relationship to CT and MR Imaging.声衰减:多频测量与 CT 和 MR 成像的关系。
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 May;68(5):1532-1545. doi: 10.1109/TUFFC.2020.3039743. Epub 2021 Apr 26.

本文引用的文献

1
Bulk Wave Velocities in Cortical Bone Reflect Porosity and Compression Strength.皮质骨中的体波速度反映了孔隙率和压缩强度。
Ultrasound Med Biol. 2021 Mar;47(3):799-808. doi: 10.1016/j.ultrasmedbio.2020.11.012. Epub 2020 Dec 16.
2
Estimation of Cortical Bone Microstructure From Ultrasound Backscatter.从超声背散射估算皮质骨微观结构。
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Apr;68(4):1081-1095. doi: 10.1109/TUFFC.2020.3033050. Epub 2021 Mar 26.
9
Frequency Dependence of Ultrasound Neurostimulation in the Mouse Brain.小鼠大脑中超声神经刺激的频率依赖性
Ultrasound Med Biol. 2016 Jul;42(7):1512-30. doi: 10.1016/j.ultrasmedbio.2016.02.012. Epub 2016 Apr 15.
10
Improved cortical bone specificity in UTE MR Imaging.UTE磁共振成像中皮质骨特异性的改善。
Magn Reson Med. 2017 Feb;77(2):684-695. doi: 10.1002/mrm.26160. Epub 2016 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验