F. M. Kirby Neurobiology Center and Department of Neurology, Children's Hospital, Boston, MA 02115.
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1622-7. doi: 10.1073/pnas.1314826111. Epub 2014 Jan 13.
ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.
肌萎缩侧索硬化症(ALS)是一种致命的神经退行性疾病,其特征是运动神经元进行性丧失和肌肉远端轴突末梢萎缩,导致运动功能丧失。垂死运动神经元的轴突回缩导致运动终板去神经支配,部分被存活的运动神经元重新支配;然而,这种轴突发芽不足以补偿运动神经元的丧失。激活转录因子 3(ATF3)促进神经元存活和轴突生长。在这里,我们揭示了在 SOD1(G93A) ALS 转基因小鼠的运动神经元中强制表达 ATF3 通过诱导轴突发芽和增强运动神经元活力来延迟神经肌肉接点去神经支配。在 ATF3/SOD1(G93A) 小鼠疾病过程中,神经肌肉接点的神经支配得以维持,与肌肉萎缩的显著延迟和运动功能的改善有关。尽管疾病的发病和死亡率有所延迟,但疾病持续时间不受影响。这项研究表明,适应性轴突生长促进机制可以显著改善 ALS 中的运动功能,重要的是,增强运动神经元胞体的活力并维持功能性神经肌肉接点连接是 SOD1(G93A) 小鼠运动神经元疾病治疗的重要因素。因此,要恢复最佳运动神经元功能,就需要对多种失调的细胞途径进行有效保护。