Gautier Olivia, Blum Jacob A, Nguyen Thao P, Klemm Sandy, Yamakawa Mai, Sinnott-Armstrong Nasa, Zeng Yi, Davis Chung-Ha O, Bombosch Juliane, Nakayama Lisa, Guttenplan Kevin A, Chen Derek, Kathira Arwa, Zhao Luke, Rexach Jessica E, Greenleaf William J, Gitler Aaron D
Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
Stanford Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
bioRxiv. 2025 Aug 25:2025.08.21.671404. doi: 10.1101/2025.08.21.671404.
To uncover molecular determinants of motor neuron degeneration and selective vulnerability in amyotrophic lateral sclerosis (ALS), we generated longitudinal single-nucleus transcriptomes and chromatin accessibility profiles of spinal motor neurons from the SOD1-G93A ALS mouse model. Vulnerable alpha motor neurons showed thousands of molecular changes, marking a transition into a novel cell state we named 'disease-associated motor neurons' (DAMNs). We identified transcription factor regulatory networks that govern how healthy cells transition into DAMNs as well as those linked to vulnerable and resistant motor neuron subtypes. Using spatial transcriptomics, we found reactive glia located near motor neurons early in disease, suggesting early signaling events between motor neurons and glia. Finally, we found that the human orthologs of genomic regions with differential accessibility in SOD1-G93A alpha motor neurons are enriched for single nucleotide polymorphisms associated with human ALS, providing evidence that the genetic underpinnings of motor neuron vulnerability are conserved.
为了揭示肌萎缩侧索硬化症(ALS)中运动神经元变性和选择性易损性的分子决定因素,我们生成了来自SOD1-G93A ALS小鼠模型的脊髓运动神经元的纵向单核转录组和染色质可及性图谱。易损的α运动神经元显示出数千种分子变化,标志着向一种我们命名为“疾病相关运动神经元”(DAMNs)的新细胞状态转变。我们确定了转录因子调控网络,这些网络控制健康细胞如何转变为DAMNs,以及与易损和抗性运动神经元亚型相关的网络。使用空间转录组学,我们发现在疾病早期运动神经元附近存在反应性胶质细胞,这表明运动神经元和胶质细胞之间存在早期信号事件。最后,我们发现SOD1-G93Aα运动神经元中具有差异可及性的基因组区域的人类直系同源基因富含与人类ALS相关的单核苷酸多态性,这为运动神经元易损性的遗传基础是保守的提供了证据。