Suppr超能文献

基于多图谱标签融合的小鼠脑 MRI 自动结构分割。

Automatic structural parcellation of mouse brain MRI using multi-atlas label fusion.

机构信息

Centre for Medical Imaging Computing, University College London, London, England, United Kingdom ; Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, England, United Kingdom.

Centre for Medical Imaging Computing, University College London, London, England, United Kingdom.

出版信息

PLoS One. 2014 Jan 27;9(1):e86576. doi: 10.1371/journal.pone.0086576. eCollection 2014.

Abstract

Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopts the similarity and truth estimation for propagated segmentations (STEPS) algorithm, which utilises a locally normalised cross correlation similarity metric for atlas selection and an extended simultaneous truth and performance level estimation (STAPLE) framework for multi-label fusion. The segmentation accuracy of the multi-atlas framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label fusion to achieve the best segmentation accuracy. We showed that our multi-atlas framework resulted in significantly higher segmentation accuracy compared to single-atlas based segmentation, as well as to the original STAPLE framework.

摘要

多图谱分割传播技术近年来发展迅速,成为结构图像自动分割的一种先进方法。然而,很少有研究将这些方法应用于临床前研究。在这项研究中,我们提出了一种使用多图谱分割传播的全自动小鼠脑 MRI 结构分割框架。该框架采用相似性和传播分割的真实估计(STEPS)算法,该算法利用局部归一化互相关相似性度量进行图谱选择,并采用扩展的同时真实和性能水平估计(STAPLE)框架进行多标签融合。使用具有预分割手动标记解剖结构的公共小鼠脑图谱数据库作为金标准评估多图谱框架的分割准确性,并针对标签融合中的 STEPS 算法优化参数以实现最佳分割准确性。我们表明,与基于单图谱的分割以及原始 STAPLE 框架相比,我们的多图谱框架的分割准确性显著提高。

相似文献

1
Automatic structural parcellation of mouse brain MRI using multi-atlas label fusion.
PLoS One. 2014 Jan 27;9(1):e86576. doi: 10.1371/journal.pone.0086576. eCollection 2014.
2
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
4
Metric Learning for Multi-atlas based Segmentation of Hippocampus.
Neuroinformatics. 2017 Jan;15(1):41-50. doi: 10.1007/s12021-016-9312-y.
5
A multi-atlas based method for automated anatomical rat brain MRI segmentation and extraction of PET activity.
PLoS One. 2014 Oct 17;9(10):e109113. doi: 10.1371/journal.pone.0109113. eCollection 2014.
6
Automatic macaque brain segmentation based on 7T MRI.
Magn Reson Imaging. 2022 Oct;92:232-242. doi: 10.1016/j.mri.2022.07.001. Epub 2022 Jul 13.
7
Discriminative confidence estimation for probabilistic multi-atlas label fusion.
Med Image Anal. 2017 Dec;42:274-287. doi: 10.1016/j.media.2017.08.008. Epub 2017 Sep 1.
8
A generative probability model of joint label fusion for multi-atlas based brain segmentation.
Med Image Anal. 2014 Aug;18(6):881-90. doi: 10.1016/j.media.2013.10.013. Epub 2013 Nov 16.
9
Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation.
Hum Brain Mapp. 2014 Jun;35(6):2674-97. doi: 10.1002/hbm.22359. Epub 2013 Oct 23.
10
A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction.
Neuroimage. 2013 Aug 15;77:26-43. doi: 10.1016/j.neuroimage.2013.03.029. Epub 2013 Mar 26.

引用本文的文献

2
The effects of locus coeruleus ablation on mouse brain volume and microstructure evaluated by high-field MRI.
Front Cell Neurosci. 2024 Dec 11;18:1498133. doi: 10.3389/fncel.2024.1498133. eCollection 2024.
3
Glymphatic inhibition exacerbates tau propagation in an Alzheimer's disease model.
Alzheimers Res Ther. 2024 Apr 5;16(1):71. doi: 10.1186/s13195-024-01439-2.
4
Investigating brain alterations in the Dp1Tyb mouse model of Down syndrome.
Neurobiol Dis. 2023 Nov;188:106336. doi: 10.1016/j.nbd.2023.106336.
7
MR Template-Based Individual Brain PET Volumes-of-Interest Generation Neither Using MR nor Using Spatial Normalization.
Nucl Med Mol Imaging. 2023 Apr;57(2):73-85. doi: 10.1007/s13139-022-00772-4. Epub 2022 Oct 4.
9
An End-To-End Pipeline for Fully Automatic Morphological Quantification of Mouse Brain Structures From MRI Imagery.
Front Bioinform. 2022 Jun 8;2:865443. doi: 10.3389/fbinf.2022.865443. eCollection 2022.
10
Automatic Cerebral Hemisphere Segmentation in Rat MRI with Ischemic Lesions via Attention-based Convolutional Neural Networks.
Neuroinformatics. 2023 Jan;21(1):57-70. doi: 10.1007/s12021-022-09607-1. Epub 2022 Sep 30.

本文引用的文献

1
Mapping registration sensitivity in MR mouse brain images.
Neuroimage. 2013 Nov 15;82:226-36. doi: 10.1016/j.neuroimage.2013.06.004. Epub 2013 Jun 10.
2
Operationalizing protocol differences for EADC-ADNI manual hippocampal segmentation.
Alzheimers Dement. 2015 Feb;11(2):184-94. doi: 10.1016/j.jalz.2013.03.001. Epub 2013 May 21.
3
An MRI atlas of the mouse basal ganglia.
Brain Struct Funct. 2014 Jul;219(4):1343-53. doi: 10.1007/s00429-013-0572-0. Epub 2013 May 21.
4
A segmentation protocol and MRI atlas of the C57BL/6J mouse neocortex.
Neuroimage. 2013 Sep;78:196-203. doi: 10.1016/j.neuroimage.2013.04.008. Epub 2013 Apr 12.
7
Segmentation of the C57BL/6J mouse cerebellum in magnetic resonance images.
Neuroimage. 2012 Sep;62(3):1408-14. doi: 10.1016/j.neuroimage.2012.05.061. Epub 2012 May 30.
8
Atlas-based automatic mouse brain image segmentation revisited: model complexity vs. image registration.
Magn Reson Imaging. 2012 Jul;30(6):789-98. doi: 10.1016/j.mri.2012.02.010. Epub 2012 Mar 30.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验