Suppr超能文献

基于注意力卷积神经网络的大鼠 MRI 脑梗死病变自动半球分割。

Automatic Cerebral Hemisphere Segmentation in Rat MRI with Ischemic Lesions via Attention-based Convolutional Neural Networks.

机构信息

A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70150, Finland.

Charles River Discovery Services, Kuopio, 70210, Finland.

出版信息

Neuroinformatics. 2023 Jan;21(1):57-70. doi: 10.1007/s12021-022-09607-1. Epub 2022 Sep 30.

Abstract

We present MedicDeepLabv3+, a convolutional neural network that is the first completely automatic method to segment cerebral hemispheres in magnetic resonance (MR) volumes of rats with ischemic lesions. MedicDeepLabv3+ improves the state-of-the-art DeepLabv3+ with an advanced decoder, incorporating spatial attention layers and additional skip connections that, as we show in our experiments, lead to more precise segmentations. MedicDeepLabv3+ requires no MR image preprocessing, such as bias-field correction or registration to a template, produces segmentations in less than a second, and its GPU memory requirements can be adjusted based on the available resources. We optimized MedicDeepLabv3+ and six other state-of-the-art convolutional neural networks (DeepLabv3+, UNet, HighRes3DNet, V-Net, VoxResNet, Demon) on a heterogeneous training set comprised by MR volumes from 11 cohorts acquired at different lesion stages. Then, we evaluated the trained models and two approaches specifically designed for rodent MRI skull stripping (RATS and RBET) on a large dataset of 655 MR rat brain volumes. In our experiments, MedicDeepLabv3+ outperformed the other methods, yielding an average Dice coefficient of 0.952 and 0.944 in the brain and contralateral hemisphere regions. Additionally, we show that despite limiting the GPU memory and the training data, our MedicDeepLabv3+ also provided satisfactory segmentations. In conclusion, our method, publicly available at https://github.com/jmlipman/MedicDeepLabv3Plus , yielded excellent results in multiple scenarios, demonstrating its capability to reduce human workload in rat neuroimaging studies.

摘要

我们提出了 MedicDeepLabv3+,这是一种卷积神经网络,是第一个完全自动分割磁共振(MR)容积中大鼠缺血性病变大脑半球的方法。MedicDeepLabv3+ 通过一个先进的解码器改进了最先进的 DeepLabv3+,其中包含空间注意力层和额外的跳过连接,正如我们在实验中所展示的,这导致了更精确的分割。MedicDeepLabv3+ 不需要对 MR 图像进行预处理,例如偏置场校正或配准到模板,在不到一秒的时间内生成分割结果,并且可以根据可用资源调整其 GPU 内存需求。我们在由来自 11 个不同病变阶段的不同队列的 MR 体积组成的异构训练集上优化了 MedicDeepLabv3+和其他六个最先进的卷积神经网络(DeepLabv3+、UNet、HighRes3DNet、V-Net、VoxResNet、Demon)。然后,我们在一个包含 655 个 MR 大鼠脑容积的大型数据集上评估了训练后的模型和专门为啮齿动物 MRI 颅骨剥离设计的两种方法(RATS 和 RBET)。在我们的实验中,MedicDeepLabv3+ 优于其他方法,在大脑和对侧半球区域的平均 Dice 系数分别为 0.952 和 0.944。此外,我们还表明,尽管限制了 GPU 内存和训练数据,我们的 MedicDeepLabv3+ 也提供了令人满意的分割结果。总之,我们的方法在多个场景中都取得了优异的结果,证明了它在大鼠神经影像学研究中减少人工工作量的能力,该方法可在 https://github.com/jmlipman/MedicDeepLabv3Plus 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a04/9931784/aee31f5cf509/12021_2022_9607_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验