Suppr超能文献

野生型产前小鼠大动脉的血管几何形状、流体力学和壁面剪应力的表征

Characterization of the vessel geometry, flow mechanics and wall shear stress in the great arteries of wildtype prenatal mouse.

作者信息

Yap Choon Hwai, Liu Xiaoqin, Pekkan Kerem

机构信息

Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.

Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.

出版信息

PLoS One. 2014 Jan 27;9(1):e86878. doi: 10.1371/journal.pone.0086878. eCollection 2014.

Abstract

INTRODUCTION

Abnormal fluid mechanical environment in the pre-natal cardiovascular system is hypothesized to play a significant role in causing structural heart malformations. It is thus important to improve our understanding of the prenatal cardiovascular fluid mechanical environment at multiple developmental time-points and vascular morphologies. We present such a study on fetal great arteries on the wildtype mouse from embryonic day 14.5 (E14.5) to near-term (E18.5).

METHODS

Ultrasound bio-microscopy (UBM) was used to measure blood velocity of the great arteries. Subsequently, specimens were cryo-embedded and sectioned using episcopic fluorescent image capture (EFIC) to obtain high-resolution 2D serial image stacks, which were used for 3D reconstructions and quantitative measurement of great artery and aortic arch dimensions. EFIC and UBM data were input into subject-specific computational fluid dynamics (CFD) for modeling hemodynamics.

RESULTS

In normal mouse fetuses between E14.5-18.5, ultrasound imaging showed gradual but statistically significant increase in blood velocity in the aorta, pulmonary trunk (with the ductus arteriosus), and descending aorta. Measurement by EFIC imaging displayed a similar increase in cross sectional area of these vessels. However, CFD modeling showed great artery average wall shear stress and wall shear rate remain relatively constant with age and with vessel size, indicating that hemodynamic shear had a relative constancy over gestational period considered here.

CONCLUSION

Our EFIC-UBM-CFD method allowed reasonably detailed characterization of fetal mouse vascular geometry and fluid mechanics. Our results suggest that a homeostatic mechanism for restoring vascular wall shear magnitudes may exist during normal embryonic development. We speculate that this mechanism regulates the growth of the great vessels.

摘要

引言

产前心血管系统中异常的流体力学环境被认为在导致心脏结构畸形方面起着重要作用。因此,增进我们对多个发育时间点和血管形态下的产前心血管流体力学环境的理解非常重要。我们展示了一项针对野生型小鼠从胚胎第14.5天(E14.5)到接近足月(E18.5)的胎儿大动脉的研究。

方法

使用超声生物显微镜(UBM)测量大动脉的血流速度。随后,对标本进行冷冻包埋,并使用落射荧光图像采集(EFIC)进行切片,以获得高分辨率的二维连续图像堆栈,用于大动脉和主动脉弓尺寸的三维重建和定量测量。将EFIC和UBM数据输入特定个体的计算流体动力学(CFD)中以模拟血流动力学。

结果

在E14.5 - 18.5的正常小鼠胎儿中,超声成像显示主动脉、肺动脉干(含动脉导管)和降主动脉的血流速度逐渐增加,但具有统计学意义。通过EFIC成像测量显示这些血管的横截面积也有类似增加。然而,CFD建模显示大动脉的平均壁面剪切应力和壁面剪切速率随年龄和血管大小保持相对恒定,表明在所考虑的妊娠期内血流动力学剪切具有相对稳定性。

结论

我们的EFIC - UBM - CFD方法能够对胎儿小鼠血管几何形状和流体力学进行较为详细的表征。我们的结果表明,在正常胚胎发育过程中可能存在一种恢复血管壁剪切大小的稳态机制。我们推测这种机制调节大血管的生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d813/3903591/538b2b2c024d/pone.0086878.g001.jpg

相似文献

1
Characterization of the vessel geometry, flow mechanics and wall shear stress in the great arteries of wildtype prenatal mouse.
PLoS One. 2014 Jan 27;9(1):e86878. doi: 10.1371/journal.pone.0086878. eCollection 2014.
3
Aortic arch morphogenesis and flow modeling in the chick embryo.
Ann Biomed Eng. 2009 Jun;37(6):1069-81. doi: 10.1007/s10439-009-9682-5. Epub 2009 Apr 1.
4
Growth and hemodynamics after early embryonic aortic arch occlusion.
Biomech Model Mechanobiol. 2015 Aug;14(4):735-51. doi: 10.1007/s10237-014-0633-1. Epub 2014 Nov 23.
7
Characterization of the in vivo wall shear stress environment of human fetus umbilical arteries and veins.
Biomech Model Mechanobiol. 2017 Feb;16(1):197-211. doi: 10.1007/s10237-016-0810-5. Epub 2016 Jul 25.
9
Effect of exercise on hemodynamic conditions in the abdominal aorta.
J Vasc Surg. 1999 Jun;29(6):1077-89. doi: 10.1016/s0741-5214(99)70249-1.
10
Normal patterns of thoracic aortic wall shear stress measured using four-dimensional flow MRI in a large population.
Am J Physiol Heart Circ Physiol. 2018 Nov 1;315(5):H1174-H1181. doi: 10.1152/ajpheart.00017.2018. Epub 2018 Jul 20.

引用本文的文献

2
An anatomically informed computational fluid dynamics modeling approach for quantifying hemodynamics in the developing heart.
PLoS One. 2025 May 19;20(5):e0322233. doi: 10.1371/journal.pone.0322233. eCollection 2025.
5
Soft-Tissue Material Properties and Mechanogenetics during Cardiovascular Development.
J Cardiovasc Dev Dis. 2022 Feb 21;9(2):64. doi: 10.3390/jcdd9020064.
6
A Review of Biomechanics Analysis of the Umbilical-Placenta System With Regards to Diseases.
Front Physiol. 2021 Aug 12;12:587635. doi: 10.3389/fphys.2021.587635. eCollection 2021.
7
Vascular Aging in the Invertebrate Chordate, .
Front Mol Biosci. 2021 Apr 8;8:626827. doi: 10.3389/fmolb.2021.626827. eCollection 2021.
8
Sinus Hemodynamics Variation with Tilted Transcatheter Aortic Valve Deployments.
Ann Biomed Eng. 2019 Jan;47(1):75-84. doi: 10.1007/s10439-018-02120-0. Epub 2018 Aug 27.
9
Continuous measurement of aortic dimensions in Turner syndrome: a cardiovascular magnetic resonance study.
J Cardiovasc Magn Reson. 2017 Feb 24;19(1):20. doi: 10.1186/s12968-017-0336-8.
10
Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development.
PLoS One. 2016 Aug 23;11(8):e0161611. doi: 10.1371/journal.pone.0161611. eCollection 2016.

本文引用的文献

1
2
Computational fluid dynamics in congenital heart disease.
Cardiol Young. 2012 Dec;22(6):800-8. doi: 10.1017/S1047951112002028.
3
A novel 3D mouse embryo atlas based on micro-CT.
Development. 2012 Sep;139(17):3248-56. doi: 10.1242/dev.082016.
4
Computational hemodynamic optimization predicts dominant aortic arch selection is driven by embryonic outflow tract orientation in the chick embryo.
Biomech Model Mechanobiol. 2012 Sep;11(7):1057-73. doi: 10.1007/s10237-012-0373-z. Epub 2012 Feb 4.
5
Left ventricular hypoplasia: a spectrum of disease involving the left ventricular outflow tract, aortic valve, and aorta.
J Am Coll Cardiol. 2012 Jan 3;59(1 Suppl):S43-54. doi: 10.1016/j.jacc.2011.04.046.
6
Rheology of embryonic avian blood.
Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2473-81. doi: 10.1152/ajpheart.00475.2011. Epub 2011 Sep 30.
7
Blood flow in the rabbit aortic arch and descending thoracic aorta.
J R Soc Interface. 2011 Dec 7;8(65):1708-19. doi: 10.1098/rsif.2011.0116. Epub 2011 May 18.
8
Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition.
Circ Res. 2011 Apr 29;108(9):1093-101. doi: 10.1161/CIRCRESAHA.110.231860. Epub 2011 Mar 10.
9
Transient regenerative potential of the neonatal mouse heart.
Science. 2011 Feb 25;331(6020):1078-80. doi: 10.1126/science.1200708.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验