Suppr超能文献

基于微 CT 的新型 3D 鼠胚胎图谱

A novel 3D mouse embryo atlas based on micro-CT.

机构信息

Department of Medical Biophysics, University of Toronto, and Hospital for Sick Children, Toronto, ON M5G 2M9, Canada.

出版信息

Development. 2012 Sep;139(17):3248-56. doi: 10.1242/dev.082016.

Abstract

The goal of the International Mouse Phenotyping Consortium (IMPC) is to phenotype targeted knockout mouse strains throughout the whole mouse genome (23,000 genes) by 2021. A significant percentage of the generated mice will be embryonic lethal; therefore, phenotyping methods tuned to the mouse embryo are needed. Methods that are robust, quantitative, automated and high-throughput are attractive owing to the numbers of mice involved. Three-dimensional (3D) imaging is a useful method for characterizing morphological phenotypes. However, tools to automatically quantify morphological information of mouse embryos from 3D imaging have not been fully developed. We present a representative mouse embryo average 3D atlas comprising micro-CT images of 35 individual C57BL/6J mouse embryos at 15.5 days post-coitum. The 35 micro-CT images were registered into a consensus average image with our automated image registration software and 48 anatomical structures were segmented manually. We report the mean and variation in volumes for each of the 48 segmented structures. Mouse organ volumes vary by 2.6-4.2% on a linear scale when normalized to whole body volume. A power analysis of the volume data reports that a 9-14% volume difference can be detected between two classes of mice with sample sizes of eight. This resource will be crucial in establishing baseline anatomical phenotypic measurements for the assessment of mutant mouse phenotypes, as any future mutant embryo image can be registered to the atlas and subsequent organ volumes calculated automatically.

摘要

国际小鼠表型分析联盟(IMPC)的目标是在 2021 年前对靶向敲除小鼠品系进行全基因组表型分析(23000 个基因)。由于大量的基因被敲除,产生的小鼠中有相当大比例是胚胎致死的;因此,需要针对小鼠胚胎进行表型分析方法的调整。由于涉及的小鼠数量众多,稳健、定量、自动化和高通量的方法很有吸引力。三维(3D)成像技术是一种用于描述形态表型的有用方法。然而,尚未完全开发出从 3D 成像中自动量化小鼠胚胎形态信息的工具。我们提出了一个具有代表性的小鼠胚胎平均 3D 图谱,该图谱包含了 35 只 C57BL/6J 小鼠胚胎在受精后 15.5 天的微 CT 图像。这 35 张微 CT 图像通过我们的自动图像配准软件配准到一个共识平均图像中,并手动分割了 48 个解剖结构。我们报告了 48 个分割结构中每个结构的体积均值和变异。当标准化为全身体积时,48 个分割结构的体积变化范围为 2.6%-4.2%。对体积数据的幂分析报告称,在样本量为 8 的情况下,两个类别的小鼠之间可以检测到 9-14%的体积差异。这个资源对于建立用于评估突变小鼠表型的基线解剖学表型测量至关重要,因为任何未来的突变胚胎图像都可以注册到图谱中,并自动计算随后的器官体积。

相似文献

1
A novel 3D mouse embryo atlas based on micro-CT.
Development. 2012 Sep;139(17):3248-56. doi: 10.1242/dev.082016.
2
Automated pipeline for anatomical phenotyping of mouse embryos using micro-CT.
Development. 2014 Jun;141(12):2533-41. doi: 10.1242/dev.107722. Epub 2014 May 21.
3
Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping.
Neuroimage. 2011 Jan 15;54(2):769-78. doi: 10.1016/j.neuroimage.2010.07.039. Epub 2010 Jul 23.
4
LAMA: automated image analysis for the developmental phenotyping of mouse embryos.
Development. 2021 Mar 24;148(18):dev192955. doi: 10.1242/dev.192955.
5
Structural stabilization of tissue for embryo phenotyping using micro-CT with iodine staining.
PLoS One. 2013 Dec 30;8(12):e84321. doi: 10.1371/journal.pone.0084321. eCollection 2013.
6
A bioimage informatics platform for high-throughput embryo phenotyping.
Brief Bioinform. 2018 Jan 1;19(1):41-51. doi: 10.1093/bib/bbw101.
7
Phenotype detection in morphological mutant mice using deformation features.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):437-44. doi: 10.1007/978-3-642-40760-4_55.
8
Estimation of mouse organ locations through registration of a statistical mouse atlas with micro-CT images.
IEEE Trans Med Imaging. 2012 Jan;31(1):88-102. doi: 10.1109/TMI.2011.2165294. Epub 2011 Aug 18.
9
4D atlas of the mouse embryo for precise morphological staging.
Development. 2015 Oct 15;142(20):3583-91. doi: 10.1242/dev.125872.
10
Deep learning enabled multi-organ segmentation of mouse embryos.
Biol Open. 2023 Feb 15;12(2). doi: 10.1242/bio.059698. Epub 2023 Feb 21.

引用本文的文献

1
Anatomy-aware, label-informed approach improves image registration for challenging datasets.
bioRxiv. 2025 Aug 12:2025.08.11.669599. doi: 10.1101/2025.08.11.669599.
2
SlicerMorph: An open and extensible platform to retrieve, visualize and analyze 3D morphology.
Methods Ecol Evol. 2021 Oct;12(10):1816-1825. doi: 10.1111/2041-210x.13669. Epub 2021 Jul 14.
3
Microcomputed Tomography in the Adriamycin Rat Model of Malformations-Preliminary Results.
Biomolecules. 2025 Apr 11;15(4):569. doi: 10.3390/biom15040569.
5
Experimental assessment of diffusible iodine-based contrast-enhanced computed tomography (diceCT) protocols.
PeerJ. 2024 Sep 5;12:e17919. doi: 10.7717/peerj.17919. eCollection 2024.
7
The sex of organ geometry.
Nature. 2024 Jun;630(8016):392-400. doi: 10.1038/s41586-024-07463-4. Epub 2024 May 29.
8
Interactive three-dimensional atlas of the mineralized skeleton of the sand tiger shark .
R Soc Open Sci. 2024 May 1;11(5):240287. doi: 10.1098/rsos.240287. eCollection 2024 May.
9
10
E15.5 Mouse Embryo Micro-CT Using a Bruker Skyscan 1172 Micro-CT.
Bio Protoc. 2023 May 5;13(9):e4662. doi: 10.21769/BioProtoc.4662.

本文引用的文献

1
Genes into geometry: imaging for mouse development in 3D.
Curr Opin Genet Dev. 2011 Oct;21(5):638-46. doi: 10.1016/j.gde.2011.08.009. Epub 2011 Sep 8.
2
Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism.
Autism Res. 2011 Oct;4(5):368-76. doi: 10.1002/aur.215. Epub 2011 Aug 31.
3
Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning.
Neuroimage. 2011 Feb 1;54(3):2086-95. doi: 10.1016/j.neuroimage.2010.09.086. Epub 2010 Oct 13.
4
Mouse embryonic phenotyping by morphometric analysis of MR images.
Physiol Genomics. 2010 Oct;42A(2):89-95. doi: 10.1152/physiolgenomics.00091.2010. Epub 2010 Aug 3.
5
Magnetic resonance virtual histology for embryos: 3D atlases for automated high-throughput phenotyping.
Neuroimage. 2011 Jan 15;54(2):769-78. doi: 10.1016/j.neuroimage.2010.07.039. Epub 2010 Jul 23.
6
Comparative SNR for high-throughput mouse embryo MR microscopy.
Magn Reson Med. 2010 Jun;63(6):1703-7. doi: 10.1002/mrm.22352.
7
Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging.
Neuroimage. 2010 Nov 15;53(3):1023-9. doi: 10.1016/j.neuroimage.2010.03.038. Epub 2010 Mar 19.
8
Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro-CT with iodine staining.
Circ Cardiovasc Imaging. 2010 May;3(3):314-22. doi: 10.1161/CIRCIMAGING.109.918482. Epub 2010 Feb 27.
9
Cerebral asymmetries in 12-week-old C57Bl/6J mice measured by magnetic resonance imaging.
Neuroimage. 2010 Apr 1;50(2):409-15. doi: 10.1016/j.neuroimage.2009.12.043. Epub 2009 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验