1] QUEST Institut, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany [2].
QUEST Institut, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany.
Nat Commun. 2014;5:3096. doi: 10.1038/ncomms4096.
Precision spectroscopy of atomic and molecular ions offers a window to new physics, but is typically limited to species with a cycling transition for laser cooling and detection. Quantum logic spectroscopy has overcome this limitation for species with long-lived excited states. Here we extend quantum logic spectroscopy to fast, dipole-allowed transitions and apply it to perform an absolute frequency measurement. We detect the absorption of photons by the spectroscopically investigated ion through the photon recoil imparted on a co-trapped ion of a different species, on which we can perform efficient quantum logic detection techniques. This amplifies the recoil signal from a few absorbed photons to thousands of fluorescence photons. We resolve the line centre of a dipole-allowed transition in (40)Ca(+) to 1/300 of its observed linewidth, rendering this measurement one of the most accurate of a broad transition. The simplicity and versatility of this approach enables spectroscopy of many previously inaccessible species.
原子和分子离子的精密光谱学为新物理提供了一个窗口,但通常仅限于具有循环跃迁的物种,以便进行激光冷却和探测。量子逻辑光谱学已经克服了这种对于具有长寿命激发态的物种的限制。在这里,我们将量子逻辑光谱学扩展到快速的、偶极允许的跃迁,并应用它来进行绝对频率测量。我们通过对不同物种的共俘获离子施加光子反冲来探测被光谱研究的离子对光子的吸收,我们可以在其上执行高效的量子逻辑检测技术。这将吸收的少数几个光子的反冲信号放大到数千个荧光光子。我们将(40)Ca(+)中的偶极允许跃迁的线心分辨率提高到其观察到的线宽的 1/300,使得该测量成为最准确的宽跃迁之一。这种方法的简单性和多功能性使许多以前无法进入的物种的光谱学成为可能。