Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany.
Institut für Quantenoptik, Leibniz Universität Hannover, 30167 Hannover, Germany.
Nature. 2016 Feb 25;530(7591):457-60. doi: 10.1038/nature16513. Epub 2016 Feb 8.
Precision laser spectroscopy of cold and trapped molecular ions is a powerful tool in fundamental physics--used, for example, in determining fundamental constants, testing for their possible variation in the laboratory, and searching for a possible electric dipole moment of the electron. However, the absence of cycling transitions in molecules poses a challenge for direct laser cooling of the ions, and for controlling and detecting their quantum states. Previously used state-detection techniques based on photodissociation or chemical reactions are destructive and therefore inefficient, restricting the achievable resolution in laser spectroscopy. Here, we experimentally demonstrate non-destructive detection of the quantum state of a single trapped molecular ion through its strong Coulomb coupling to a well controlled, co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force changes the internal state of the atom according to the internal state of the molecule. We show that individual quantum states in the molecular ion can be distinguished by the strength of their coupling to the optical dipole force. We also observe quantum jumps (induced by black-body radiation) between rotational states of a single molecular ion. Using the detuning dependence of the state-detection signal, we implement a variant of quantum logic spectroscopy of a molecular resonance. Our state-detection technique is relevant to a wide range of molecular ions, and could be applied to state-controlled quantum chemistry and to spectroscopic investigations of molecules that serve as probes for interstellar clouds.
冷原子和囚禁分子离子的精密激光光谱学是基础物理学中的一个有力工具——例如,它被用于确定基本常数,在实验室中检验它们是否可能发生变化,以及寻找电子可能的电偶极矩。然而,分子中没有循环跃迁,这对离子的直接激光冷却以及对其量子态的控制和检测构成了挑战。以前使用的基于光解或化学反应的状态检测技术是破坏性的,因此效率低下,限制了激光光谱学的可实现分辨率。在这里,我们通过其与受良好控制的共囚禁原子离子的强库仑耦合,实验性地证明了对单个囚禁分子离子量子态的非破坏性检测。基于依赖于状态的光偶极力的算法会根据分子的内部状态来改变原子的内部状态。我们表明,根据与光偶极力的耦合强度,可以区分分子离子中的单个量子态。我们还观察到单个分子离子的转动态之间的量子跃迁(由黑体辐射引起)。我们利用状态检测信号的失谐依赖性,实现了分子共振的量子逻辑光谱学的变体。我们的状态检测技术适用于广泛的分子离子,可应用于受控量子化学以及作为星际云探针的分子的光谱研究。