Cellular Neurobiology Unit, Centre de recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec City, Quebec, Canada G1J 2G3, Centre for Optics, Photonics, and Lasers, Université Laval, Quebec City, Quebec, Canada G1K 7P4, and Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada G1K 7P4.
J Neurosci. 2014 Jan 29;34(5):1748-59. doi: 10.1523/JNEUROSCI.3013-13.2014.
The adult olfactory bulb is continuously supplied with neuronal precursors that differentiate into granule and periglomerular cells. Little is known about the structural dynamic of adult-born granule cells (GCs) at their different maturational stages, the mechanisms controlling the integration of new neurons into the pre-existing neuronal circuitry, or the role of principal cell activity in these processes. We used two-photon time-lapse imaging to reveal a high level of filopodia formation and retraction on the distal dendrites of adult-born GCs at their early maturational stages. This dynamic decreased as the adult-born interneurons matured. Filopodia formation/retraction on the dendrites of adult-born GCs at the early maturational stages depended on the activation of NMDA receptors (NMDARs). The stimulation of mitral cells using a pattern that mimics activity of these principal neurons to odor presentation promotes the NMDAR-dependent filopodia dynamic of adult-born GCs during their early but not late maturational stages. Moreover, NMDA iontophoresis was sufficient to induce the formation of new filopodia on the distal dendrites of immature adult-born GCs. The maturation of adult-born interneurons was accompanied by a progressive hyperpolarization of the membrane potential and an increased Mg(2+) block of NMDARs. Decreasing the extracellular Mg(2+) concentration led to filopodia formation on the dendrites of mature adult-born GCs following NMDA iontophoresis. Our findings reveal an increased structural dynamic of adult-born GCs during the early stages of their integration into the mouse bulbar circuitry and highlight a critical period during which the principal cells' activity influences filopodia formation/retraction on the dendrites of interneurons.
成年嗅球不断接收神经元前体细胞,这些前体细胞分化为颗粒细胞和肾小球旁细胞。对于成年产生的颗粒细胞(GCs)在不同成熟阶段的结构动态、控制新神经元整合到预先存在的神经元回路中的机制,或者主细胞活动在这些过程中的作用,我们知之甚少。我们使用双光子延时成像技术揭示了成年产生的 GCs 在早期成熟阶段其远端树突上存在高水平的丝状伪足形成和缩回。随着成年产生的中间神经元的成熟,这种动态性降低。在早期成熟阶段,成年产生的 GCs 树突上的丝状伪足形成/缩回依赖于 NMDA 受体(NMDAR)的激活。使用模拟这些主神经元对气味呈现活动的模式刺激僧帽细胞,促进成年产生的 GCs 在早期成熟阶段而非晚期成熟阶段依赖于 NMDAR 的丝状伪足动态。此外,NMDA 离子电渗足以诱导不成熟的成年产生的 GCs 远端树突上新丝状伪足的形成。成年产生的中间神经元的成熟伴随着膜电位的逐渐超极化和 NMDAR 对镁(Mg(2+))阻断的增加。降低细胞外 Mg(2+)浓度会导致 NMDA 离子电渗后成熟的成年产生的 GCs 树突上丝状伪足的形成。我们的发现揭示了成年产生的 GCs 在整合到小鼠嗅球回路的早期阶段结构动态增加,并强调了一个关键时期,在此期间,主细胞的活动会影响中间神经元树突上丝状伪足的形成/缩回。