Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel.
Department of Neurobiology, the Hebrew University of Jerusalem, Jerusalem, Israel.
PLoS Comput Biol. 2021 May 24;17(5):e1009015. doi: 10.1371/journal.pcbi.1009015. eCollection 2021 May.
Synaptic clustering on neuronal dendrites has been hypothesized to play an important role in implementing pattern recognition. Neighboring synapses on a dendritic branch can interact in a synergistic, cooperative manner via nonlinear voltage-dependent mechanisms, such as NMDA receptors. Inspired by the NMDA receptor, the single-branch clusteron learning algorithm takes advantage of location-dependent multiplicative nonlinearities to solve classification tasks by randomly shuffling the locations of "under-performing" synapses on a model dendrite during learning ("structural plasticity"), eventually resulting in synapses with correlated activity being placed next to each other on the dendrite. We propose an alternative model, the gradient clusteron, or G-clusteron, which uses an analytically-derived gradient descent rule where synapses are "attracted to" or "repelled from" each other in an input- and location-dependent manner. We demonstrate the classification ability of this algorithm by testing it on the MNIST handwritten digit dataset and show that, when using a softmax activation function, the accuracy of the G-clusteron on the all-versus-all MNIST task (85%) approaches that of logistic regression (93%). In addition to the location update rule, we also derive a learning rule for the synaptic weights of the G-clusteron ("functional plasticity") and show that a G-clusteron that utilizes the weight update rule can achieve ~89% accuracy on the MNIST task. We also show that a G-clusteron with both the weight and location update rules can learn to solve the XOR problem from arbitrary initial conditions.
神经元树突上的突触簇集被假设在实现模式识别中发挥重要作用。树突分支上的相邻突触可以通过非线性电压依赖性机制(如 NMDA 受体)以协同、合作的方式相互作用。受 NMDA 受体的启发,单枝簇集学习算法利用位置相关的乘法非线性来解决分类任务,方法是在学习过程中(“结构可塑性”)随机打乱模型树突上“表现不佳”的突触的位置,最终导致具有相关活动的突触彼此相邻地放置在树突上。我们提出了一种替代模型,即梯度簇集(gradient clusteron,或 G-clusteron),它使用一种解析衍生的梯度下降规则,其中突触以输入和位置依赖的方式“相互吸引”或“相互排斥”。我们通过在 MNIST 手写数字数据集上测试该算法来证明其分类能力,并表明在使用 softmax 激活函数时,G-clusteron 在全对全 MNIST 任务上的准确率(约 85%)接近逻辑回归(约 93%)。除了位置更新规则外,我们还为 G-clusteron 的突触权重推导了一个学习规则(“功能可塑性”),并表明使用权重更新规则的 G-clusteron 可以在 MNIST 任务上实现约 89%的准确率。我们还表明,具有权重和位置更新规则的 G-clusteron 可以从任意初始条件学习解决异或问题。