Department of Chemistry and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL (USA).
Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2417-21. doi: 10.1002/anie.201308431. Epub 2014 Jan 31.
A major barrier to understanding the mechanism of nitric oxide reductases (NORs) is the lack of a selective probe of NO binding to the nonheme FeB center. By replacing the heme in a biosynthetic model of NORs, which structurally and functionally mimics NORs, with isostructural ZnPP, the electronic structure and functional properties of the FeB nitrosyl complex was probed. This approach allowed observation of the first S=3/2 nonheme {FeNO}(7) complex in a protein-based model system of NOR. Detailed spectroscopic and computational studies show that the electronic state of the {FeNO}(7) complex is best described as a high spin ferrous iron (S=2) antiferromagnetically coupled to an NO radical (S=1/2) [Fe(2+)-NO(.)]. The radical nature of the FeB -bound NO would facilitate N-N bond formation by radical coupling with the heme-bound NO. This finding, therefore, supports the proposed trans mechanism of NO reduction by NORs.
理解一氧化氮还原酶(NORs)机制的主要障碍是缺乏对非血红素 FeB 中心与 NO 结合的选择性探针。通过用结构和功能上模拟 NORs 的生物合成 NOR 模型中的血红素替换为等结构的 ZnPP,探测了 FeB 亚硝酰配合物的电子结构和功能特性。这种方法允许在 NOR 的基于蛋白质的模型系统中观察到第一个 S=3/2 非血红素 {FeNO}(7) 配合物。详细的光谱和计算研究表明,{FeNO}(7) 配合物的电子态最好描述为亚铁(S=2)与 NO 自由基(S=1/2)[Fe(2+)-NO(.)]的反铁磁耦合的高自旋。FeB 结合的 NO 的自由基性质将通过与血红素结合的 NO 的自由基偶联促进 N-N 键形成。因此,这一发现支持了 NORs 还原 NO 的 proposed trans 机制。