Strobel Claudia, Torrano Adriano A, Herrmann Rudolf, Malissek Marcelina, Bräuchle Christoph, Reller Armin, Treuel Lennart, Hilger Ingrid
Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital-Friedrich Schiller University Jena, Erlanger Allee 101, 07747 Jena, Germany.
Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13 (E), 81377 Munich, Germany.
J Nanopart Res. 2014;16(1):2130. doi: 10.1007/s11051-013-2130-3. Epub 2013 Dec 4.
Until now, the potential effects of titanium dioxide (TiO) nanoparticles on endothelial cells are not well understood, despite their already wide usage. Therefore, the present work characterizes six TiO nanoparticle samples in the size range of 19 × 17 to 87 × 13 nm, which are commonly present in sun protection agents with respect to their physicochemical properties (size, shape, ζ-potential, agglomeration, sedimentation, surface coating, and surface area), their interactions with serum proteins and biological impact on human microvascular endothelial cells (relative cellular dehydrogenase activity, adenosine triphosphate content, and monocyte chemoattractant protein-1 release). We observed no association of nanoparticle morphology with the agglomeration and sedimentation behavior and no variations of the ζ-potential (-14 to -19 mV) in dependence on the surface coating. In general, the impact on endothelial cells was low and only detectable at concentrations of 100 μg/ml. Particles containing a rutile core and having rod-like shape had a stronger effect on cell metabolism than those with anatase core and elliptical shape (relative cellular dehydrogenase activity after 72 h: 60 vs. 90 %). Besides the morphology, the nanoparticle shell constitution was found to influence the metabolic activity of the cells. Upon cellular uptake, the nanoparticles were localized perinuclearly. Considering that in the in vivo situation endothelial cells would come in contact with considerably lower nanoparticle amounts than the lowest-observable adverse effects level (100 μg/ml), TiO nanoparticles can be considered as rather harmless to humans under the investigated conditions.
到目前为止,尽管二氧化钛(TiO₂)纳米颗粒已被广泛使用,但其对内皮细胞的潜在影响仍未得到充分了解。因此,本研究对六种尺寸范围在19×17至87×13纳米的TiO₂纳米颗粒样品进行了表征,这些纳米颗粒常见于防晒剂中,研究内容包括它们的物理化学性质(尺寸、形状、ζ电位、团聚、沉降、表面涂层和表面积)、与血清蛋白的相互作用以及对人微血管内皮细胞的生物学影响(相对细胞脱氢酶活性、三磷酸腺苷含量和单核细胞趋化蛋白-1释放)。我们观察到纳米颗粒形态与团聚和沉降行为之间没有关联,并且ζ电位(-14至-19 mV)不会因表面涂层而发生变化。一般来说,对内皮细胞的影响较小,只有在浓度为100μg/ml时才能检测到。含有金红石核且呈棒状的颗粒对细胞代谢的影响比含有锐钛矿核且呈椭圆形的颗粒更强(72小时后相对细胞脱氢酶活性:60%对90%)。除了形态外,还发现纳米颗粒的外壳组成会影响细胞的代谢活性。纳米颗粒被细胞摄取后,定位于细胞核周围。考虑到在体内情况下,内皮细胞接触到的纳米颗粒量将远低于最低可观察到的不良反应水平(100μg/ml),在研究条件下,TiO₂纳米颗粒可被认为对人类相当无害。