Suppr超能文献

迈向对纳米颗粒与蛋白质相互作用的分子理解。

Toward a molecular understanding of nanoparticle-protein interactions.

作者信息

Treuel Lennart, Nienhaus Gerd Ulrich

机构信息

Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany.

Institute of Physical Chemistry, University of Duisburg-Essen, 45141, Essen, Germany.

出版信息

Biophys Rev. 2012 Jun;4(2):137-147. doi: 10.1007/s12551-012-0072-0. Epub 2012 Mar 15.

Abstract

Wherever nanoparticles (NPs) come in contact with a living organism, physical and chemical interactions take place between the surfaces of the NPs and biomatter, in particular proteins. When NP are exposed to biological fluids, an adsorption layer of proteins, a "protein corona" forms around the NPs. Consequently, living systems interact with the protein-coated NP rather than with a bare NP. To anticipate biological responses to NPs, we thus require comprehensive knowledge of the interactions at the bio-nano interface. In recent years, a wide variety of biophysical techniques have been employed to elucidate mechanistic aspects of NP-protein interactions. In this brief review, we present the latest findings regarding the composition of the protein corona as it forms on NPs in the blood stream. We also discuss molecular aspects of this adsorption layer and its time evolution. The current state of knowledge is summarized, and issues that still need to be addressed to further advance our understanding of NP-protein interactions are identified.

摘要

无论纳米颗粒(NPs)在何处与生物体接触,纳米颗粒表面与生物物质(尤其是蛋白质)之间都会发生物理和化学相互作用。当纳米颗粒暴露于生物流体中时,会在纳米颗粒周围形成一层蛋白质吸附层,即“蛋白质冠”。因此,生物系统与蛋白质包被的纳米颗粒相互作用,而不是与裸露的纳米颗粒相互作用。为了预测对纳米颗粒的生物反应,我们因此需要全面了解生物-纳米界面的相互作用。近年来,已经采用了各种各样的生物物理技术来阐明纳米颗粒与蛋白质相互作用的机制方面。在这篇简短的综述中,我们展示了关于在血流中纳米颗粒上形成的蛋白质冠的组成的最新发现。我们还讨论了这个吸附层的分子方面及其随时间的演变。总结了当前的知识状态,并确定了为进一步推进我们对纳米颗粒与蛋白质相互作用的理解仍需解决的问题。

相似文献

5
The protein corona on nanoparticles as viewed from a nanoparticle-sizing perspective.从纳米颗粒粒径角度观察纳米颗粒表面的蛋白冠。
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018 Jul;10(4):e1500. doi: 10.1002/wnan.1500. Epub 2017 Oct 26.
8
Protein corona - from molecular adsorption to physiological complexity.蛋白质冠层——从分子吸附到生理复杂性
Beilstein J Nanotechnol. 2015 Mar 30;6:857-73. doi: 10.3762/bjnano.6.88. eCollection 2015.

引用本文的文献

5
Kinetics of nanoparticle uptake into and distribution in human cells.纳米颗粒被人体细胞摄取及其在细胞内分布的动力学
Nanoscale Adv. 2021 Mar 18;3(8):2196-2212. doi: 10.1039/d0na00716a. eCollection 2021 Apr 20.
6
HSA-MnO-I Combined Imaging and Treatment of Anaplastic Thyroid Carcinoma.HSA-MnO-I 联合成像与治疗间变性甲状腺癌。
Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221106557. doi: 10.1177/15330338221106557.
7
Sources of variability in nanoparticle uptake by cells.细胞摄取纳米颗粒的变异性来源。
Nanoscale. 2021 Oct 28;13(41):17530-17546. doi: 10.1039/d1nr04690j.

本文引用的文献

8
Gold nanoparticle dimers for plasmon sensing.金纳米粒子二聚体用于等离子体传感。
Langmuir. 2011 Jun 21;27(12):7884-91. doi: 10.1021/la200840m. Epub 2011 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验