Fossion R, Torres Vargas G, López Vieyra J C
Instituto Nacional de Geriatría, Periférico Sur No. 2767, 10200 México D.F., Mexico and Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, 04510 México D.F., Mexico.
Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):060902. doi: 10.1103/PhysRevE.88.060902. Epub 2013 Dec 10.
Spectra of ordered eigenvalues of finite random matrices are interpreted as a time series. Data-adaptive techniques from signal analysis are applied to decompose the spectrum in clearly differentiated trend and fluctuation modes, avoiding possible artifacts introduced by standard unfolding techniques. The fluctuation modes are scale invariant and follow different power laws for Poisson and Gaussian ensembles, which already during the unfolding allows one to distinguish the two cases.
有限随机矩阵的有序特征值谱被解释为一个时间序列。应用信号分析中的数据自适应技术,将谱分解为明显不同的趋势和波动模式,避免了标准展开技术可能引入的伪像。波动模式是尺度不变的,并且对于泊松系综和高斯系综遵循不同的幂律,这在展开过程中就能够区分这两种情况。