Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom.
Phys Rev Lett. 2013 Dec 27;111(26):266801. doi: 10.1103/PhysRevLett.111.266801. Epub 2013 Dec 26.
We develop a theory of interaction effects in graphene superlattices, where tunable superlattice periodicity can be used as a knob to control the gap at the Dirac point. Applied to graphene on hexa-boron-nitride (G/h-BN), our theory predicts substantial many-body enhancement of this gap. Tunable by the moiré superlattice periodicity, a few orders of magnitude enhancement is reachable under optimal conditions. The Dirac point gap enhancement can be much larger than that of the minigaps opened by Bragg scattering at principal superlattice harmonics. This naturally explains the conundrum of large Dirac point gaps recently observed in G/h-BN heterostructures and their tunability by the G/h-BN twist angle.
我们提出了一个在石墨烯超晶格中相互作用效应的理论,其中可调谐的超晶格周期可以作为旋钮来控制狄拉克点处的能隙。我们的理论应用于六方氮化硼上的石墨烯(G/h-BN),预测了这种能隙的显著多体增强。在最佳条件下,通过莫尔超晶格周期可调谐,可以实现几个数量级的增强。狄拉克点能隙增强可以比主超晶格谐的布拉格散射所打开的小能隙大得多。这自然解释了最近在 G/h-BN 异质结构中观察到的大狄拉克点间隙以及通过 G/h-BN 扭转角进行可调谐的难题。