Isobe Hiroki, Xu Su-Yang, Fu Liang
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Sci Adv. 2020 Mar 27;6(13):eaay2497. doi: 10.1126/sciadv.aay2497. eCollection 2020 Mar.
Rectification is a process that converts electromagnetic fields into a direct current. Such a process underlies a wide range of technologies such as wireless communication, wireless charging, energy harvesting, and infrared detection. Existing rectifiers are mostly based on semiconductor diodes, with limited applicability to small-voltage or high-frequency inputs. Here, we present an alternative approach to current rectification that uses the intrinsic electronic properties of quantum crystals without using semiconductor junctions. We identify a previously unknown mechanism for rectification from skew scattering due to the inherent chirality of itinerant electrons in time-reversal invariant but inversion-breaking materials. Our calculations reveal large, tunable rectification effects in graphene multilayers and transition metal dichalcogenides. Our work demonstrates the possibility of realizing high-frequency rectifiers by rational material design and quantum wave function engineering.
整流是一个将电磁场转换为直流电的过程。这样一个过程是诸如无线通信、无线充电、能量收集和红外探测等广泛技术的基础。现有的整流器大多基于半导体二极管,对小电压或高频输入的适用性有限。在此,我们提出了一种用于电流整流的替代方法,该方法利用量子晶体的固有电子特性,而不使用半导体结。我们从时间反演不变但空间反演破缺材料中巡游电子的固有手性导致的斜散射中识别出一种先前未知的整流机制。我们的计算揭示了石墨烯多层膜和过渡金属二硫属化物中存在大的、可调节的整流效应。我们的工作证明了通过合理的材料设计和量子波函数工程实现高频整流器的可能性。