Quellmalz Arne, Wang Xiaojing, Sawallich Simon, Uzlu Burkay, Otto Martin, Wagner Stefan, Wang Zhenxing, Prechtl Maximilian, Hartwig Oliver, Luo Siwei, Duesberg Georg S, Lemme Max C, Gylfason Kristinn B, Roxhed Niclas, Stemme Göran, Niklaus Frank
Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
Protemics GmbH, Aachen, Germany.
Nat Commun. 2021 Feb 10;12(1):917. doi: 10.1038/s41467-021-21136-0.
Integrating two-dimensional (2D) materials into semiconductor manufacturing lines is essential to exploit their material properties in a wide range of application areas. However, current approaches are not compatible with high-volume manufacturing on wafer level. Here, we report a generic methodology for large-area integration of 2D materials by adhesive wafer bonding. Our approach avoids manual handling and uses equipment, processes, and materials that are readily available in large-scale semiconductor manufacturing lines. We demonstrate the transfer of CVD graphene from copper foils (100-mm diameter) and molybdenum disulfide (MoS) from SiO/Si chips (centimeter-sized) to silicon wafers (100-mm diameter). Furthermore, we stack graphene with CVD hexagonal boron nitride and MoS layers to heterostructures, and fabricate encapsulated field-effect graphene devices, with high carrier mobilities of up to [Formula: see text]. Thus, our approach is suited for backend of the line integration of 2D materials on top of integrated circuits, with potential to accelerate progress in electronics, photonics, and sensing.
将二维(2D)材料集成到半导体生产线中对于在广泛的应用领域中利用其材料特性至关重要。然而,目前的方法与晶圆级的大规模制造不兼容。在此,我们报告了一种通过粘性晶圆键合实现二维材料大面积集成的通用方法。我们的方法避免了人工操作,并使用了大规模半导体生产线中现成的设备、工艺和材料。我们展示了将化学气相沉积(CVD)石墨烯从铜箔(直径100毫米)和二硫化钼(MoS)从SiO/Si芯片(厘米尺寸)转移到硅晶圆(直径100毫米)上。此外,我们将石墨烯与CVD六方氮化硼和MoS层堆叠成异质结构,并制造出具有高达[公式:见原文]的高载流子迁移率的封装场效应石墨烯器件。因此,我们的方法适用于在集成电路之上进行二维材料的线后端集成,具有加速电子、光子和传感领域进展的潜力。