Suppr超能文献

涌现的群体编码原理:探寻神经编码

Emerging principles of population coding: in search for the neural code.

机构信息

Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel; Department of Physics, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.

出版信息

Curr Opin Neurobiol. 2014 Apr;25:140-8. doi: 10.1016/j.conb.2014.01.002. Epub 2014 Feb 1.

Abstract

Population coding theory aims to provide quantitative tests for hypotheses concerning the neural code. Over the last two decades theory has focused on analyzing the ways in which various parameters that characterize neuronal responses to external stimuli affect the information content of these responses. This article reviews and provides an intuitive explanation for the major effects of noise correlations and neuronal heterogeneity, and discusses their implications for our ability to investigate the neural code. It is argued that to test neural code hypotheses further, additional constraints are required, including relating trial-to-trial variation in neuronal population responses to behavioral decisions and specifying how information is decoded by downstream networks.

摘要

群体编码理论旨在为有关神经编码假说提供定量检验。在过去的二十年中,该理论的重点一直是分析各种参数对神经元对外界刺激反应的影响方式,这些参数会影响这些反应的信息含量。本文综述并直观解释了噪声相关性和神经元异质性的主要影响,并讨论了它们对我们研究神经编码能力的影响。有人认为,要进一步检验神经编码假说,还需要额外的限制条件,包括将神经元群体反应在试验间的变化与行为决策联系起来,并具体说明信息如何被下游网络解码。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验