Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA. Harvard Medical School, Boston, MA, USA.
Phys Med Biol. 2014 Feb 21;59(4):853-67. doi: 10.1088/0031-9155/59/4/853. Epub 2014 Feb 3.
For the radiation treatment of lung cancer patients, four-dimensional computed tomography (4D-CT) is a common practice used clinically to image tumor motion and subsequently determine the internal target volume (ITV) from the maximum intensity projection (MIP) images. ITV, which is derived from short pre-treatment 4D-CT scan (<6 s per couch position), may not adequately cover the extent of tumor motion during the treatment, particularly for patients that exhibit a large respiratory variability. Inaccurate tumor localization may result in under-dosage of the tumor or over-dosage of the surrounding tissues. The purpose of this study is therefore to assess the degree of tumor under-dosage in case of regular and irregular breathing for proton radiotherapy using ITV-based treatment planning. We place a spherical lesion into a modified XCAT phantom that is also capable of producing 4D images based on irregular breathing, and move the tumor according to real tumor motion data, which is acquired over multiple days by tracking gold fiducial markers implanted into the lung tumors of patients. We derive ITVs by taking the union of all tumor positions during 6 s of tumor motion in the phantom using the first day patient tumor tracking data. This is equivalent to ITVs generated clinically from cine-mode 4D-CT MIP images. The treatment plans created for different ITVs are then implemented on dynamic phantoms with tumor motion governed by real tumor tracking data from consecutive days. By comparing gross tumor volume dose distribution on days of 'treatment' with the ITV dose distribution, we evaluate the deviation of the actually delivered dose from the predicted dose. Our results have shown that the proton treatment planning on ITV derived from pre-treatment cine-mode 4D-CT can result in under-dosage (dose covering 95% of volume) of the tumor by up to 25.7% over 3 min of treatment for the patient with irregular respiratory motion. Tumor under-dosage is less significant for the patient with relatively regular breathing. We have demonstrated that proton therapy using the pre-treatment 4D-CT based ITV method can lead to significant under-dosage of the tumor, highlighting the need for daily customization to generate a target volume that represents tumor positions during the treatment more accurately.
对于肺癌患者的放射治疗,四维计算机断层扫描(4D-CT)是临床上常用的成像肿瘤运动的方法,并随后从最大强度投影(MIP)图像确定内部靶区(ITV)。ITV 是从治疗前的 4D-CT 扫描(每张床位置小于 6 秒)中得出的,可能无法充分覆盖治疗过程中肿瘤运动的范围,特别是对于表现出呼吸变异较大的患者。肿瘤定位不准确可能导致肿瘤剂量不足或周围组织剂量过高。因此,本研究旨在评估在使用基于 ITV 的治疗计划进行质子放射治疗时,常规和不规则呼吸情况下肿瘤剂量不足的程度。我们将一个球形病变放置在一个经过修改的 XCAT 体模中,该体模也能够根据不规则呼吸产生 4D 图像,并根据跟踪植入肺部肿瘤的金基准标记物获得的多天肿瘤运动数据移动肿瘤。我们通过使用第一天的患者肿瘤跟踪数据,在体模中肿瘤运动的 6 秒内获取所有肿瘤位置的并集来获得 ITV。这相当于从电影模式 4D-CT MIP 图像中临床生成的 ITV。然后,根据连续几天的真实肿瘤跟踪数据控制肿瘤运动,将为不同 ITV 创建的治疗计划应用于动态体模。通过比较“治疗”日的大体肿瘤体积剂量分布与 ITV 剂量分布,我们评估实际递送剂量与预测剂量的偏差。我们的结果表明,对于呼吸运动不规则的患者,基于治疗前电影模式 4D-CT 的 ITV 质子治疗计划可能导致肿瘤剂量不足(覆盖 95%体积的剂量),在 3 分钟的治疗过程中最多可达 25.7%。对于呼吸相对规律的患者,肿瘤剂量不足的情况不太明显。我们已经证明,使用基于治疗前 4D-CT 的 ITV 方法的质子治疗可能导致肿瘤剂量显著不足,这突出了需要每天定制以生成更准确代表治疗期间肿瘤位置的靶区的必要性。