Suppr超能文献

一种在肺部放疗期间使用千伏成像进行三维无标记肿瘤追踪的贝叶斯方法。

A Bayesian approach for three-dimensional markerless tumor tracking using kV imaging during lung radiotherapy.

作者信息

Shieh Chun-Chien, Caillet Vincent, Dunbar Michelle, Keall Paul J, Booth Jeremy T, Hardcastle Nicholas, Haddad Carol, Eade Thomas, Feain Ilana

机构信息

Sydney Medical School, The University of Sydney, NSW 2006, Australia.

出版信息

Phys Med Biol. 2017 Apr 21;62(8):3065-3080. doi: 10.1088/1361-6560/aa6393. Epub 2017 Mar 21.

Abstract

The ability to monitor tumor motion without implanted markers can potentially enable broad access to more accurate and precise lung radiotherapy. A major challenge is that kilovoltage (kV) imaging based methods are rarely able to continuously track the tumor due to the inferior tumor visibility on 2D kV images. Another challenge is the estimation of 3D tumor position based on only 2D imaging information. The aim of this work is to address both challenges by proposing a Bayesian approach for markerless tumor tracking for the first time. The proposed approach adopts the framework of the extended Kalman filter, which combines a prediction and measurement steps to make the optimal tumor position update. For each imaging frame, the tumor position is first predicted by a respiratory-correlated model. The 2D tumor position on the kV image is then measured by template matching. Finally, the prediction and 2D measurement are combined based on the 3D distribution of tumor positions in the past 10 s and the estimated uncertainty of template matching. To investigate the clinical feasibility of the proposed method, a total of 13 lung cancer patient datasets were used for retrospective validation, including 11 cone-beam CT scan pairs and two stereotactic ablative body radiotherapy cases. The ground truths for tumor motion were generated from the the 3D trajectories of implanted markers or beacons. The mean, standard deviation, and 95th percentile of the 3D tracking error were found to range from 1.6-2.9 mm, 0.6-1.5 mm, and 2.6-5.8 mm, respectively. Markerless tumor tracking always resulted in smaller errors compared to the standard of care. The improvement was the most pronounced in the superior-inferior (SI) direction, with up to 9.5 mm reduction in the 95th-percentile SI error for patients with  >10 mm 5th-to-95th percentile SI tumor motion. The percentage of errors with 3D magnitude  <5 mm was 96.5% for markerless tumor tracking and 84.1% for the standard of care. The feasibility of 3D markerless tumor tracking has been demonstrated on realistic clinical scenarios for the first time. The clinical implementation of the proposed method will enable more accurate and precise lung radiotherapy using existing hardware and workflow. Future work is focused on the clinical and real-time implementation of this method.

摘要

无需植入标记物就能监测肿瘤运动,这有可能使更多人能够获得更准确、精确的肺癌放疗。一个主要挑战是,基于千伏(kV)成像的方法由于二维kV图像上肿瘤可见性较差,很少能够连续跟踪肿瘤。另一个挑战是仅基于二维成像信息估计三维肿瘤位置。这项工作的目的是首次提出一种贝叶斯方法用于无标记肿瘤跟踪,以应对这两个挑战。所提出的方法采用扩展卡尔曼滤波器的框架,该框架结合预测和测量步骤来进行最佳肿瘤位置更新。对于每个成像帧,首先通过呼吸相关模型预测肿瘤位置。然后通过模板匹配测量kV图像上的二维肿瘤位置。最后,根据过去10秒内肿瘤位置的三维分布以及模板匹配的估计不确定性,将预测值和二维测量值相结合。为了研究所提出方法的临床可行性,总共使用了13个肺癌患者数据集进行回顾性验证,包括11对锥形束CT扫描以及两个立体定向消融体部放疗病例。肿瘤运动的真实情况是根据植入标记物或信标的三维轨迹生成的。发现三维跟踪误差的平均值、标准差和第95百分位数分别在1.6 - 2.9毫米、0.6 - 1.5毫米和2.6 - 5.8毫米范围内。与护理标准相比,无标记肿瘤跟踪始终产生较小的误差。在上下(SI)方向上改善最为明显,对于第5至第95百分位数SI肿瘤运动大于10毫米的患者,第95百分位数SI误差最多减少9.5毫米。无标记肿瘤跟踪三维误差幅度<5毫米的百分比为96.5%,护理标准为84.1%。首次在实际临床场景中证明了三维无标记肿瘤跟踪的可行性。所提出方法的临床应用将能够使用现有硬件和工作流程实现更准确、精确的肺癌放疗。未来的工作重点是该方法的临床和实时应用。

相似文献

1
A Bayesian approach for three-dimensional markerless tumor tracking using kV imaging during lung radiotherapy.
Phys Med Biol. 2017 Apr 21;62(8):3065-3080. doi: 10.1088/1361-6560/aa6393. Epub 2017 Mar 21.
2
Markerless tumor tracking using short kilovoltage imaging arcs for lung image-guided radiotherapy.
Phys Med Biol. 2015 Dec 21;60(24):9437-54. doi: 10.1088/0031-9155/60/24/9437. Epub 2015 Nov 19.
3
Real-time direct diaphragm tracking using kV imaging on a standard linear accelerator.
Med Phys. 2019 Oct;46(10):4481-4489. doi: 10.1002/mp.13738. Epub 2019 Aug 13.
5
Markerless tracking of small lung tumors for stereotactic radiotherapy.
Med Phys. 2015 Apr;42(4):1640-52. doi: 10.1118/1.4914401.
6
10
Deep learning-based target decomposition for markerless lung tumor tracking in radiotherapy.
Med Phys. 2024 Jun;51(6):4271-4282. doi: 10.1002/mp.17039. Epub 2024 Mar 20.

引用本文的文献

3
Deep learning-based target decomposition for markerless lung tumor tracking in radiotherapy.
Med Phys. 2024 Jun;51(6):4271-4282. doi: 10.1002/mp.17039. Epub 2024 Mar 20.
7
The markerless lung target tracking AAPM Grand Challenge (MATCH) results.
Med Phys. 2022 Feb;49(2):1161-1180. doi: 10.1002/mp.15418. Epub 2021 Dec 29.
8
Machine learning applications in radiation oncology.
Phys Imaging Radiat Oncol. 2021 Jun 24;19:13-24. doi: 10.1016/j.phro.2021.05.007. eCollection 2021 Jul.

本文引用的文献

1
The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR.
Radiother Oncol. 2016 Oct;121(1):19-25. doi: 10.1016/j.radonc.2016.08.025. Epub 2016 Sep 17.
2
The accuracy of extracted target motion trajectories in four-dimensional cone-beam computed tomography for lung cancer patients.
Radiother Oncol. 2016 Oct;121(1):46-51. doi: 10.1016/j.radonc.2016.07.022. Epub 2016 Aug 12.
5
Markerless tumor tracking using short kilovoltage imaging arcs for lung image-guided radiotherapy.
Phys Med Biol. 2015 Dec 21;60(24):9437-54. doi: 10.1088/0031-9155/60/24/9437. Epub 2015 Nov 19.
6
Feasibility of markerless tumor tracking by sequential dual-energy fluoroscopy on a clinical tumor tracking system.
Radiother Oncol. 2015 Dec;117(3):487-90. doi: 10.1016/j.radonc.2015.08.021. Epub 2015 Sep 3.
8
Markerless tracking of small lung tumors for stereotactic radiotherapy.
Med Phys. 2015 Apr;42(4):1640-52. doi: 10.1118/1.4914401.
9
Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR).
Phys Med Biol. 2015 Jan 21;60(2):841-68. doi: 10.1088/0031-9155/60/2/841. Epub 2015 Jan 7.
10
Markerless motion tracking of lung tumors using dual-energy fluoroscopy.
Med Phys. 2015 Jan;42(1):254-62. doi: 10.1118/1.4903892.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验