Suppr超能文献

UVR8光感受器对紫外光感知的淬灭动力学

Quenching Dynamics of Ultraviolet-Light Perception by UVR8 Photoreceptor.

作者信息

Liu Zheyun, Li Xiankun, Zhong Frank W, Li Jiang, Wang Lijuan, Shi Yigong, Zhong Dongping

机构信息

Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.

Columbia University, New York, New York 10027, United States.

出版信息

J Phys Chem Lett. 2014 Jan 2;5(1):69-72. doi: 10.1021/jz402396k.

Abstract

UVR8 is a recently discovered UV-B photoreceptor with a homodimer as the active state. UV-B perception of an interfacial tryptophan (W285) causes dissociation of the dimer into two functional monomers. Here, we investigate the molecular mechanism behind UV perception by W285 in UVR8. We observed a significant quenching dynamics in about 150 ps within the interfacial four-tryptophan cluster and an unusual resonance energy transfer from the other ten tryptophans to the tryptophan cluster in 1-2 nanoseconds to enhance functional efficiency. With mutation of W285 to F, the quenching dynamics is highly suppressed in this intact mutant dimer and the overall fluorescence intensity dramatically increases by a factor of 6, indicating W285 as a dominant quencher. These results reveal a unique energy transfer mechanism for efficient UV perception and the critical functional role of W285 for primary quenching dynamics for initiating dimer dissociation to trigger the function.

摘要

UVR8是一种最近发现的UV-B光感受器,其活性状态为同型二聚体。界面色氨酸(W285)对UV-B的感知会导致二聚体解离成两个功能性单体。在此,我们研究了UVR8中W285对紫外线感知背后的分子机制。我们观察到界面四色氨酸簇内约150皮秒内有显著的猝灭动力学,以及在1 - 2纳秒内从其他十个色氨酸到色氨酸簇的异常共振能量转移,以提高功能效率。将W285突变为F后,在这个完整的突变二聚体中猝灭动力学受到高度抑制,整体荧光强度显著增加了6倍,表明W285是主要的猝灭剂。这些结果揭示了一种独特的能量转移机制,用于高效的紫外线感知,以及W285在启动二聚体解离以触发功能的初级猝灭动力学中的关键功能作用。

相似文献

1
Quenching Dynamics of Ultraviolet-Light Perception by UVR8 Photoreceptor.
J Phys Chem Lett. 2014 Jan 2;5(1):69-72. doi: 10.1021/jz402396k.
3
A leap in quantum efficiency through light harvesting in photoreceptor UVR8.
Nat Commun. 2020 Aug 28;11(1):4316. doi: 10.1038/s41467-020-17838-6.
4
In vivo function of tryptophans in the Arabidopsis UV-B photoreceptor UVR8.
Plant Cell. 2012 Sep;24(9):3755-66. doi: 10.1105/tpc.112.101451. Epub 2012 Sep 25.
5
Photoactivated UVR8-COP1 module determines photomorphogenic UV-B signaling output in Arabidopsis.
PLoS Genet. 2014 Mar 20;10(3):e1004218. doi: 10.1371/journal.pgen.1004218. eCollection 2014 Mar.
6
Reaction dynamics of the UV-B photosensor UVR8.
Photochem Photobiol Sci. 2015 May;14(5):995-1004. doi: 10.1039/c5pp00012b.
8
The role of tryptophans in the UV-B absorption of a UVR8 photoreceptor--a computational study.
Phys Chem Chem Phys. 2015 Apr 28;17(16):10786-94. doi: 10.1039/c4cp06073c.
9
Dimer/monomer status and in vivo function of salt-bridge mutants of the plant UV-B photoreceptor UVR8.
Plant J. 2016 Oct;88(1):71-81. doi: 10.1111/tpj.13260. Epub 2016 Sep 9.
10
Dynamics and mechanism of light harvesting in UV photoreceptor UVR8.
Chem Sci. 2020 Oct 28;11(46):12553-12569. doi: 10.1039/d0sc04909c.

引用本文的文献

1
Dynamics and mechanism of dimer dissociation of photoreceptor UVR8.
Nat Commun. 2022 Jan 10;13(1):93. doi: 10.1038/s41467-021-27756-w.
2
Dynamics and mechanism of light harvesting in UV photoreceptor UVR8.
Chem Sci. 2020 Oct 28;11(46):12553-12569. doi: 10.1039/d0sc04909c.
3
A leap in quantum efficiency through light harvesting in photoreceptor UVR8.
Nat Commun. 2020 Aug 28;11(1):4316. doi: 10.1038/s41467-020-17838-6.
4
PET and FRET utility of an amino acid pair: tryptophan and 4-cyanotryptophan.
Phys Chem Chem Phys. 2019 Jun 28;21(24):12843-12849. doi: 10.1039/c9cp02126d. Epub 2019 Jun 10.
5
Q&A: How do plants sense and respond to UV-B radiation?
BMC Biol. 2015 Jun 30;13:45. doi: 10.1186/s12915-015-0156-y.
7
How Does Photoreceptor UVR8 Perceive a UV-B Signal?
Photochem Photobiol. 2015 Sep-Oct;91(5):993-1003. doi: 10.1111/php.12470. Epub 2015 Jun 11.
8
Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis.
Plant Cell. 2015 Jan;27(1):202-13. doi: 10.1105/tpc.114.133868. Epub 2015 Jan 27.
9
On the mechanism of photoinduced dimer dissociation in the plant UVR8 photoreceptor.
Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5219-24. doi: 10.1073/pnas.1402025111. Epub 2014 Mar 17.

本文引用的文献

1
Validation of response function construction and probing heterogeneous protein hydration by intrinsic tryptophan.
J Phys Chem B. 2012 Nov 15;116(45):13320-30. doi: 10.1021/jp305118n. Epub 2012 Nov 2.
2
Structural basis of ultraviolet-B perception by UVR8.
Nature. 2012 Feb 29;484(7393):214-9. doi: 10.1038/nature10931.
3
UV-B photoreceptor-mediated signalling in plants.
Trends Plant Sci. 2012 Apr;17(4):230-7. doi: 10.1016/j.tplants.2012.01.007. Epub 2012 Feb 9.
4
Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges.
Science. 2012 Mar 23;335(6075):1492-6. doi: 10.1126/science.1218091. Epub 2012 Feb 9.
5
The cryptochromes: blue light photoreceptors in plants and animals.
Annu Rev Plant Biol. 2011;62:335-64. doi: 10.1146/annurev-arplant-042110-103759.
6
Perception of UV-B by the Arabidopsis UVR8 protein.
Science. 2011 Apr 1;332(6025):103-6. doi: 10.1126/science.1200660.
7
Structure and function of plant photoreceptors.
Annu Rev Plant Biol. 2010;61:21-47. doi: 10.1146/annurev-arplant-042809-112259.
8
Structural basis for the photoconversion of a phytochrome to the activated Pfr form.
Nature. 2010 Jan 14;463(7278):250-4. doi: 10.1038/nature08671.
9
Protein hydration dynamics and molecular mechanism of coupled water-protein fluctuations.
J Am Chem Soc. 2009 Aug 5;131(30):10677-91. doi: 10.1021/ja902918p.
10
Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase.
Nature. 2009 Jun 18;459(7249):1015-8. doi: 10.1038/nature07966.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验