Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, P,O, Box 135, Wageningen 6700, AC, Netherlands.
Genet Sel Evol. 2014 Feb 3;46(1):6. doi: 10.1186/1297-9686-46-6.
Imputation of genotypes for ungenotyped individuals could enable the use of valuable phenotypes created before the genomic era in analyses that require genotypes. The objective of this study was to investigate the accuracy of imputation of non-genotyped individuals using genotype information from relatives.
Genotypes were simulated for all individuals in the pedigree of a real (historical) dataset of phenotyped dairy cows and with part of the pedigree genotyped. The software AlphaImpute was used for imputation in its standard settings but also without phasing, i.e. using basic inheritance rules and segregation analysis only. Different scenarios were evaluated i.e.: (1) the real data scenario, (2) addition of genotypes of sires and maternal grandsires of the ungenotyped individuals, and (3) addition of one, two, or four genotyped offspring of the ungenotyped individuals to the reference population.
The imputation accuracy using AlphaImpute in its standard settings was lower than without phasing. Including genotypes of sires and maternal grandsires in the reference population improved imputation accuracy, i.e. the correlation of the true genotypes with the imputed genotype dosages, corrected for mean gene content, across all animals increased from 0.47 (real situation) to 0.60. Including one, two and four genotyped offspring increased the accuracy of imputation across all animals from 0.57 (no offspring) to 0.73, 0.82, and 0.92, respectively.
At present, the use of basic inheritance rules and segregation analysis appears to be the best imputation method for ungenotyped individuals. Comparison of our empirical animal-specific imputation accuracies to predictions based on selection index theory suggested that not correcting for mean gene content considerably overestimates the true accuracy. Imputation of ungenotyped individuals can help to include valuable phenotypes for genome-wide association studies or for genomic prediction, especially when the ungenotyped individuals have genotyped offspring.
对未分型个体进行基因型推断,可以使在基因组时代之前创建的有价值表型在需要基因型的分析中得到利用。本研究的目的是研究利用亲属的基因型信息推断未分型个体基因型的准确性。
模拟了一个实际(历史)已表型奶牛系谱中所有个体的基因型,并对部分系谱进行了分型。使用 AlphaImpute 软件进行标准设置下的推断,但也不进行相位推断,即仅使用基本遗传规则和分离分析。评估了不同的场景,即:(1)实际数据场景,(2)添加未分型个体的父本和母本祖父的基因型,以及(3)向参考群体中添加一个、两个或四个未分型个体的已分型后代。
使用 AlphaImpute 进行标准设置推断的准确性低于不进行相位推断。在参考群体中添加父本和母本祖父的基因型可以提高推断的准确性,即校正平均基因含量后,所有动物的真实基因型与推断的基因型剂量之间的相关性从 0.47(实际情况)提高到 0.60。添加一个、两个和四个已分型后代可以将所有动物的推断准确性从 0.57(无后代)提高到 0.73、0.82 和 0.92。
目前,使用基本遗传规则和分离分析似乎是推断未分型个体基因型的最佳方法。将我们的经验性动物特异性推断准确性与基于选择指数理论的预测进行比较表明,不校正平均基因含量会大大高估真实准确性。对未分型个体进行推断可以帮助将有价值的表型纳入全基因组关联研究或基因组预测中,特别是当未分型个体有已分型后代时。