Suppr超能文献

四种水产养殖物种中低密度单核苷酸多态性(SNP)面板评估及成本效益型基因组选择的填充分析

Evaluation of low-density SNP panels and imputation for cost-effective genomic selection in four aquaculture species.

作者信息

Kriaridou Christina, Tsairidou Smaragda, Fraslin Clémence, Gorjanc Gregor, Looseley Mark E, Johnston Ian A, Houston Ross D, Robledo Diego

机构信息

The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.

Global Academy of Agriculture and Food Systems, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

Front Genet. 2023 May 11;14:1194266. doi: 10.3389/fgene.2023.1194266. eCollection 2023.

Abstract

Genomic selection can accelerate genetic progress in aquaculture breeding programmes, particularly for traits measured on siblings of selection candidates. However, it is not widely implemented in most aquaculture species, and remains expensive due to high genotyping costs. Genotype imputation is a promising strategy that can reduce genotyping costs and facilitate the broader uptake of genomic selection in aquaculture breeding programmes. Genotype imputation can predict ungenotyped SNPs in populations genotyped at a low-density (LD), using a reference population genotyped at a high-density (HD). In this study, we used datasets of four aquaculture species (Atlantic salmon, turbot, common carp and Pacific oyster), phenotyped for different traits, to investigate the efficacy of genotype imputation for cost-effective genomic selection. The four datasets had been genotyped at HD, and eight LD panels (300-6,000 SNPs) were generated . SNPs were selected to be: i) evenly distributed according to physical position ii) selected to minimise the linkage disequilibrium between adjacent SNPs or iii) randomly selected. Imputation was performed with three different software packages (AlphaImpute2, FImpute v.3 and findhap v.4). The results revealed that FImpute v.3 was faster and achieved higher imputation accuracies. Imputation accuracy increased with increasing panel density for both SNP selection methods, reaching correlations greater than 0.95 in the three fish species and 0.80 in Pacific oyster. In terms of genomic prediction accuracy, the LD and the imputed panels performed similarly, reaching values very close to the HD panels, except in the pacific oyster dataset, where the LD panel performed better than the imputed panel. In the fish species, when LD panels were used for genomic prediction without imputation, selection of markers based on either physical or genetic distance (instead of randomly) resulted in a high prediction accuracy, whereas imputation achieved near maximal prediction accuracy independently of the LD panel, showing higher reliability. Our results suggests that, in fish species, well-selected LD panels may achieve near maximal genomic selection prediction accuracy, and that the addition of imputation will result in maximal accuracy independently of the LD panel. These strategies represent effective and affordable methods to incorporate genomic selection into most aquaculture settings.

摘要

基因组选择可以加速水产养殖育种计划中的遗传进展,特别是对于在选择候选者的同胞中测量的性状。然而,它在大多数水产养殖物种中并未广泛实施,并且由于基因分型成本高而仍然昂贵。基因型填充是一种有前景的策略,可以降低基因分型成本,并促进基因组选择在水产养殖育种计划中的更广泛应用。基因型填充可以使用高密度(HD)基因分型的参考群体来预测低密度(LD)基因分型群体中的未基因分型单核苷酸多态性(SNP)。在本研究中,我们使用了四种水产养殖物种(大西洋鲑鱼、大菱鲆、鲤鱼和太平洋牡蛎)针对不同性状进行表型分析的数据集,来研究基因型填充对于具有成本效益的基因组选择的功效。这四个数据集已经进行了HD基因分型,并生成了八个LD面板(300 - 6000个SNP)。SNP被选择为:i)根据物理位置均匀分布;ii)选择以最小化相邻SNP之间的连锁不平衡;或iii)随机选择。使用三种不同的软件包(AlphaImpute2、FImpute v.3和findhap v.4)进行填充。结果表明,FImpute v.3更快并且实现了更高的填充准确性。对于两种SNP选择方法,填充准确性都随着面板密度的增加而提高,在三种鱼类中相关性大于0.95,在太平洋牡蛎中相关性大于0.80。就基因组预测准确性而言,LD面板和填充面板的表现相似,达到的值非常接近HD面板,除了在太平洋牡蛎数据集中,LD面板的表现优于填充面板。在鱼类中,当使用LD面板进行无填充的基因组预测时,基于物理或遗传距离(而不是随机)选择标记会导致较高的预测准确性,而填充无论LD面板如何都能实现接近最大的预测准确性,显示出更高的可靠性。我们的结果表明,在鱼类中,精心选择的LD面板可能实现接近最大的基因组选择预测准确性,并且添加填充将导致无论LD面板如何都能实现最大准确性。这些策略代表了将基因组选择纳入大多数水产养殖环境的有效且经济实惠的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a232/10213886/47400e47710d/fgene-14-1194266-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验