Suppr超能文献

淋巴特异性破坏硫酸乙酰肝素的精细结构可抑制淋巴结树突状细胞的迁移和功能性 T 细胞的应答。

Lymphatic specific disruption in the fine structure of heparan sulfate inhibits dendritic cell traffic and functional T cell responses in the lymph node.

机构信息

Marine Drug Research Institute, Huaihai Institute of Technology, Lianyungang 222005, China;

出版信息

J Immunol. 2014 Mar 1;192(5):2133-42. doi: 10.4049/jimmunol.1301286. Epub 2014 Feb 3.

Abstract

Dendritic cells (DCs) are potent APCs essential for initiating adaptive immunity. Following pathogen exposure, trafficking of DCs to lymph nodes (LNs) through afferent lymphatic vessels constitutes a crucial step in the execution of their functions. The mechanisms regulating this process are poorly understood, although the involvement of certain chemokines in this process has recently been reported. In this study, we demonstrate that genetically altering the fine structure (N-sulfation) of heparan sulfate (HS) specifically in mouse lymphatic endothelium significantly reduces DC trafficking to regional LNs in vivo. Moreover, this alteration had the unique functional consequence of reducing CD8(+) T cell proliferative responses in draining LNs in an ovalbumin immunization model. Mechanistic studies suggested that lymphatic endothelial HS regulates multiple steps during DC trafficking, including optimal presentation of chemokines on the surface of DCs, thus acting as a co-receptor that may function "in trans" to mediate chemokine receptor binding. This study not only identifies novel glycan-mediated mechanisms that regulate lymphatic DC trafficking, but it also validates the fine structure of lymphatic vascular-specific HS as a novel molecular target for strategies aiming to modulate DC behavior and/or alter pathologic T cell responses in lymph nodes.

摘要

树突状细胞(DCs)是启动适应性免疫所必需的强大的抗原提呈细胞。在病原体暴露后,通过输入淋巴管将 DC 运送到淋巴结(LNs)是其发挥功能的关键步骤。尽管最近有报道称某些趋化因子参与了这一过程,但调节这一过程的机制仍知之甚少。在这项研究中,我们证明了在小鼠淋巴管内皮细胞中特异性改变肝素硫酸(HS)的精细结构(N-硫酸化)可显著减少体内 DC 向局部 LNs 的迁移。此外,这种改变具有独特的功能后果,即在卵清蛋白免疫模型中减少引流 LNs 中 CD8(+)T 细胞的增殖反应。机制研究表明,淋巴管内皮 HS 调节 DC 迁移过程中的多个步骤,包括在 DC 表面最佳呈现趋化因子,因此作为一种共受体,可能通过“反式作用”来介导趋化因子受体结合。这项研究不仅确定了调节淋巴管 DC 迁移的新型聚糖介导机制,还验证了淋巴管特异性 HS 的精细结构是一种新型分子靶点,可用于调节 DC 行为和/或改变淋巴结中的病理性 T 细胞反应的策略。

相似文献

4
A critical role for lymphatic endothelial heparan sulfate in lymph node metastasis.
Mol Cancer. 2010 Dec 20;9:316. doi: 10.1186/1476-4598-9-316.
5
Characterizing the dynamics of CD4+ T cell priming within a lymph node.
J Immunol. 2010 Mar 15;184(6):2873-85. doi: 10.4049/jimmunol.0903117. Epub 2010 Feb 12.
6
Dendritic cells enter lymph vessels by hyaluronan-mediated docking to the endothelial receptor LYVE-1.
Nat Immunol. 2017 Jul;18(7):762-770. doi: 10.1038/ni.3750. Epub 2017 May 15.
7
Control of dendritic cell trafficking in lymphatics by chemokines.
Angiogenesis. 2014 Apr;17(2):335-45. doi: 10.1007/s10456-013-9407-0.
8
Intralymphatic CCL21 Promotes Tissue Egress of Dendritic Cells through Afferent Lymphatic Vessels.
Cell Rep. 2016 Feb 23;14(7):1723-1734. doi: 10.1016/j.celrep.2016.01.048. Epub 2016 Feb 11.
9
DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling.
J Exp Med. 2011 Sep 26;208(10):2141-53. doi: 10.1084/jem.20102392. Epub 2011 Sep 19.

引用本文的文献

1
Spatially targeted chemokine exocytosis guides transmigration at lymphatic endothelial multicellular junctions.
EMBO J. 2024 Aug;43(15):3141-3174. doi: 10.1038/s44318-024-00129-x. Epub 2024 Jun 14.
2
ADAMTS proteases and the tumor immune microenvironment: Lessons from substrates and pathologies.
Matrix Biol Plus. 2020 Dec 30;9:100054. doi: 10.1016/j.mbplus.2020.100054. eCollection 2021 Feb.
3
4
Heparan sulfate is essential for thymus growth.
J Biol Chem. 2021 Jan-Jun;296:100419. doi: 10.1016/j.jbc.2021.100419. Epub 2021 Feb 15.
5
Functional Cellular Anti-Tumor Mechanisms are Augmented by Genetic Proteoglycan Targeting.
Neoplasia. 2020 Feb;22(2):86-97. doi: 10.1016/j.neo.2019.11.003. Epub 2019 Dec 30.
6
Leucocyte Trafficking via the Lymphatic Vasculature- Mechanisms and Consequences.
Front Immunol. 2019 Mar 14;10:471. doi: 10.3389/fimmu.2019.00471. eCollection 2019.
7
Genetic Mechanisms of Immune Evasion in Colorectal Cancer.
Cancer Discov. 2018 Jun;8(6):730-749. doi: 10.1158/2159-8290.CD-17-1327. Epub 2018 Mar 6.
8
Increased migration of antigen presenting cells to newly-formed lymphatic vessels in transplanted kidneys by glycol-split heparin.
PLoS One. 2017 Jun 30;12(6):e0180206. doi: 10.1371/journal.pone.0180206. eCollection 2017.
9
Lymphatic Regulation of Cellular Trafficking.
J Clin Cell Immunol. 2014 Oct 1;5. doi: 10.4172/2155-9899.1000258.
10
E2F-1 promotes DAPK2-induced anti-tumor immunity of gastric cancer cells by targeting miR-34a.
Tumour Biol. 2016 Dec;37:15925–15936. doi: 10.1007/s13277-016-5446-7. Epub 2016 Oct 4.

本文引用的文献

1
Interstitial dendritic cell guidance by haptotactic chemokine gradients.
Science. 2013 Jan 18;339(6117):328-32. doi: 10.1126/science.1228456.
2
Lymph node homing of T cells and dendritic cells via afferent lymphatics.
Trends Immunol. 2012 Jun;33(6):271-80. doi: 10.1016/j.it.2012.02.007. Epub 2012 Mar 27.
4
Retro-orbital injections in mice.
Lab Anim (NY). 2011 May;40(5):155-60. doi: 10.1038/laban0511-155.
5
Lymphatic endothelial heparan sulfate deficiency results in altered growth responses to vascular endothelial growth factor-C (VEGF-C).
J Biol Chem. 2011 Apr 29;286(17):14952-62. doi: 10.1074/jbc.M110.206664. Epub 2011 Feb 22.
7
Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function.
Exp Cell Res. 2011 Mar 10;317(5):590-601. doi: 10.1016/j.yexcr.2011.01.004. Epub 2011 Jan 9.
8
A critical role for lymphatic endothelial heparan sulfate in lymph node metastasis.
Mol Cancer. 2010 Dec 20;9:316. doi: 10.1186/1476-4598-9-316.
10
Dendritic cells adhere to and transmigrate across lymphatic endothelium in response to IFN-α.
Eur J Immunol. 2010 Nov;40(11):3054-63. doi: 10.1002/eji.201040523. Epub 2010 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验