Suppr超能文献

四种计算机编码死因推断方法与医生编码在中低收入国家 24000 例死亡中的应用比较。

Performance of four computer-coded verbal autopsy methods for cause of death assignment compared with physician coding on 24,000 deaths in low- and middle-income countries.

机构信息

Centre for Global Heath Research, St, Michael's Hospital, Dalla Lana School of Public Health, University of Toronto, Toronto Ontario, Canada.

出版信息

BMC Med. 2014 Feb 4;12:20. doi: 10.1186/1741-7015-12-20.

Abstract

BACKGROUND

Physician-coded verbal autopsy (PCVA) is the most widely used method to determine causes of death (CODs) in countries where medical certification of death is uncommon. Computer-coded verbal autopsy (CCVA) methods have been proposed as a faster and cheaper alternative to PCVA, though they have not been widely compared to PCVA or to each other.

METHODS

We compared the performance of open-source random forest, open-source tariff method, InterVA-4, and the King-Lu method to PCVA on five datasets comprising over 24,000 verbal autopsies from low- and middle-income countries. Metrics to assess performance were positive predictive value and partial chance-corrected concordance at the individual level, and cause-specific mortality fraction accuracy and cause-specific mortality fraction error at the population level.

RESULTS

The positive predictive value for the most probable COD predicted by the four CCVA methods averaged about 43% to 44% across the datasets. The average positive predictive value improved for the top three most probable CODs, with greater improvements for open-source random forest (69%) and open-source tariff method (68%) than for InterVA-4 (62%). The average partial chance-corrected concordance for the most probable COD predicted by the open-source random forest, open-source tariff method and InterVA-4 were 41%, 40% and 41%, respectively, with better results for the top three most probable CODs. Performance generally improved with larger datasets. At the population level, the King-Lu method had the highest average cause-specific mortality fraction accuracy across all five datasets (91%), followed by InterVA-4 (72% across three datasets), open-source random forest (71%) and open-source tariff method (54%).

CONCLUSIONS

On an individual level, no single method was able to replicate the physician assignment of COD more than about half the time. At the population level, the King-Lu method was the best method to estimate cause-specific mortality fractions, though it does not assign individual CODs. Future testing should focus on combining different computer-coded verbal autopsy tools, paired with PCVA strengths. This includes using open-source tools applied to larger and varied datasets (especially those including a random sample of deaths drawn from the population), so as to establish the performance for age- and sex-specific CODs.

摘要

背景

在医学死亡证明不常见的国家,医生编码的死因推断(PCVA)是最广泛使用的死因确定方法。计算机编码死因推断(CCVA)方法已被提议作为 PCVA 的更快、更便宜的替代方法,但它们尚未被广泛与 PCVA 或彼此进行比较。

方法

我们比较了开源随机森林、开源关税法、InterVA-4 和 King-Lu 方法在包含来自中低收入国家的 24000 多份死因推断的五个数据集上与 PCVA 的性能。用于评估性能的指标包括个体水平的阳性预测值和部分机会校正一致性,以及人群水平的病因特异性死亡率分数准确性和病因特异性死亡率分数误差。

结果

四个 CCVA 方法预测的最可能死因的阳性预测值在数据集之间平均约为 43%至 44%。对于前三个最可能的死因,阳性预测值有所提高,开源随机森林(69%)和开源关税法(68%)的提高幅度大于 InterVA-4(62%)。开源随机森林、开源关税法和 InterVA-4 预测的最可能死因的平均部分机会校正一致性分别为 41%、40%和 41%,对于前三个最可能的死因,结果更好。性能通常随数据集的增大而提高。在人群水平上,King-Lu 方法在所有五个数据集上的平均病因特异性死亡率分数准确性最高(91%),其次是 InterVA-4(三个数据集的 72%)、开源随机森林(71%)和开源关税法(54%)。

结论

在个体水平上,没有任何一种方法能够将医生分配的死因复制超过大约一半的时间。在人群水平上,King-Lu 方法是估计病因特异性死亡率分数的最佳方法,尽管它不分配个体死因。未来的测试应侧重于结合不同的计算机编码死因推断工具,与 PCVA 的优势相结合。这包括使用适用于更大和更多样化数据集(特别是包括从人群中随机抽取的死亡样本)的开源工具,以确定年龄和性别特异性死因的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/957d/3912488/73d381515c43/1741-7015-12-20-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验