Suppr超能文献

比较医师认证的口头尸检与计算机编码的口头尸检在中低收入国家住院患者死因分配中的应用:系统评价。

Comparison of physician-certified verbal autopsy with computer-coded verbal autopsy for cause of death assignment in hospitalized patients in low- and middle-income countries: systematic review.

机构信息

Centre for Global Heath Research, St Michael's Hospital, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.

出版信息

BMC Med. 2014 Feb 4;12:22. doi: 10.1186/1741-7015-12-22.

Abstract

BACKGROUND

Computer-coded verbal autopsy (CCVA) methods to assign causes of death (CODs) for medically unattended deaths have been proposed as an alternative to physician-certified verbal autopsy (PCVA). We conducted a systematic review of 19 published comparison studies (from 684 evaluated), most of which used hospital-based deaths as the reference standard. We assessed the performance of PCVA and five CCVA methods: Random Forest, Tariff, InterVA, King-Lu, and Simplified Symptom Pattern.

METHODS

The reviewed studies assessed methods' performance through various metrics: sensitivity, specificity, and chance-corrected concordance for coding individual deaths, and cause-specific mortality fraction (CSMF) error and CSMF accuracy at the population level. These results were summarized into means, medians, and ranges.

RESULTS

The 19 studies ranged from 200 to 50,000 deaths per study (total over 116,000 deaths). Sensitivity of PCVA versus hospital-assigned COD varied widely by cause, but showed consistently high specificity. PCVA and CCVA methods had an overall chance-corrected concordance of about 50% or lower, across all ages and CODs. At the population level, the relative CSMF error between PCVA and hospital-based deaths indicated good performance for most CODs. Random Forest had the best CSMF accuracy performance, followed closely by PCVA and the other CCVA methods, but with lower values for InterVA-3.

CONCLUSIONS

There is no single best-performing coding method for verbal autopsies across various studies and metrics. There is little current justification for CCVA to replace PCVA, particularly as physician diagnosis remains the worldwide standard for clinical diagnosis on live patients. Further assessments and large accessible datasets on which to train and test combinations of methods are required, particularly for rural deaths without medical attention.

摘要

背景

为了给无人照料的死亡病例分配死因(COD),人们提出了计算机编码式死因推断(CCVA)方法,以替代医师认证式死因推断(PCVA)。我们对 19 项已发表的比较研究(共评估了 684 项)进行了系统回顾,其中大多数研究以医院死亡为参考标准。我们评估了 PCVA 和五种 CCVA 方法的性能:随机森林、关税、国际疾病分类死因推断程序、金-卢和简化症状模式。

方法

这些综述研究通过以下各种指标评估方法的性能:对个体死亡进行编码的敏感性、特异性和机会校正一致性,以及人群水平的死因特异性死亡率分数(CSMF)误差和 CSMF 准确性。这些结果被总结为平均值、中位数和范围。

结果

这 19 项研究每一项的死亡人数从 200 人到 50000 人不等(总计超过 116000 人死亡)。PCVA 与医院分配 COD 的敏感性因病因而异,但特异性始终较高。PCVA 和 CCVA 方法的整体机会校正一致性约为 50%或更低,适用于所有年龄和 COD。在人群水平上,PCVA 与医院死亡之间的相对 CSMF 误差表明,对于大多数 COD,PCVA 的性能良好。随机森林具有最佳的 CSMF 准确性性能,其次是 PCVA 和其他 CCVA 方法,但国际疾病分类死因推断程序 3 的值较低。

结论

在各种研究和指标中,没有一种单一的最佳编码方法适用于所有的死因推断。目前几乎没有理由用 CCVA 来替代 PCVA,尤其是因为医生的诊断仍然是全球对有生命的患者进行临床诊断的标准。需要进一步评估和使用大型可访问数据集来训练和测试方法组合,特别是对于没有医疗照顾的农村死亡病例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79c6/3912516/8f09d602c0c9/1741-7015-12-22-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验