Schumacher Austin E, McCormick Tyler H, Wakefield Jon, Chu Yue, Perin Jamie, Villavicencio Francisco, Simon Noah, Liu Li
Department of Biostatistics, University of Washington.
Departments of Statistics and Sociology, University of Washington.
Ann Appl Stat. 2022 Mar;16(1):124-143. doi: 10.1214/21-aoas1489. Epub 2022 Mar 28.
In order to implement disease-specific interventions in young age groups, policy makers in low- and middle-income countries require timely and accurate estimates of age- and cause-specific child mortality. High-quality data is not available in settings where these interventions are most needed, but there is a push to create sample registration systems that collect detailed mortality information. current methods that estimate mortality from this data employ multistage frameworks without rigorous statistical justification that separately estimate all-cause and cause-specific mortality and are not sufficiently adaptable to capture important features of the data. We propose a flexible Bayesian modeling framework to estimate age- and cause-specific child mortality from sample registration data. We provide a theoretical justification for the framework, explore its properties via simulation, and use it to estimate mortality trends using data from the Maternal and Child Health Surveillance System in China.
为了在低龄人群中实施针对特定疾病的干预措施,低收入和中等收入国家的政策制定者需要及时、准确地估计特定年龄和特定病因的儿童死亡率。在最需要这些干预措施的地区,无法获得高质量的数据,但目前正在推动建立收集详细死亡率信息的样本登记系统。目前从这些数据估计死亡率的方法采用多阶段框架,但缺乏严格的统计依据,这些框架分别估计全因死亡率和特定病因死亡率,并且不够灵活,无法捕捉数据的重要特征。我们提出了一个灵活的贝叶斯建模框架,用于从样本登记数据中估计特定年龄和特定病因的儿童死亡率。我们为该框架提供了理论依据,通过模拟探索其特性,并使用中国妇幼健康监测系统的数据来估计死亡率趋势。