Suppr超能文献

相似文献

1
2
Incremental learning with selective memory (ILSM): towards fast prostate localization for image guided radiotherapy.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):378-86. doi: 10.1007/978-3-642-40763-5_47.
3
A feature-based learning framework for accurate prostate localization in CT images.
IEEE Trans Image Process. 2012 Aug;21(8):3546-59. doi: 10.1109/TIP.2012.2194296. Epub 2012 Apr 9.
4
Sparse patch-based label propagation for accurate prostate localization in CT images.
IEEE Trans Med Imaging. 2013 Feb;32(2):419-34. doi: 10.1109/TMI.2012.2230018. Epub 2012 Nov 27.
5
Incorporating imaging information from deep neural network layers into image guided radiation therapy (IGRT).
Radiother Oncol. 2019 Nov;140:167-174. doi: 10.1016/j.radonc.2019.06.027. Epub 2019 Jul 11.
7
Prostate segmentation by sparse representation based classification.
Med Phys. 2012 Oct;39(10):6372-87. doi: 10.1118/1.4754304.
8
Learning image context for segmentation of the prostate in CT-guided radiotherapy.
Phys Med Biol. 2012 Mar 7;57(5):1283-308. doi: 10.1088/0031-9155/57/5/1283. Epub 2012 Feb 17.
10
Learning image context for segmentation of prostate in CT-guided radiotherapy.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):570-8. doi: 10.1007/978-3-642-23626-6_70.

引用本文的文献

1
Medical Image Analysis using Convolutional Neural Networks: A Review.
J Med Syst. 2018 Oct 8;42(11):226. doi: 10.1007/s10916-018-1088-1.
2
A combined learning algorithm for prostate segmentation on 3D CT images.
Med Phys. 2017 Nov;44(11):5768-5781. doi: 10.1002/mp.12528. Epub 2017 Sep 22.
3
Combining Population and Patient-Specific Characteristics for Prostate Segmentation on 3D CT Images.
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9784. doi: 10.1117/12.2216255. Epub 2016 Mar 21.
4
Computer-aided cephalometric landmark annotation for CBCT data.
Int J Comput Assist Radiol Surg. 2017 Jan;12(1):113-121. doi: 10.1007/s11548-016-1453-9. Epub 2016 Jun 29.
5
Accurate Segmentation of CT Male Pelvic Organs via Regression-Based Deformable Models and Multi-Task Random Forests.
IEEE Trans Med Imaging. 2016 Jun;35(6):1532-43. doi: 10.1109/TMI.2016.2519264. Epub 2016 Jan 18.
6
Collaborative regression-based anatomical landmark detection.
Phys Med Biol. 2015 Dec 21;60(24):9377-401. doi: 10.1088/0031-9155/60/24/9377. Epub 2015 Nov 18.
7
Locally-constrained boundary regression for segmentation of prostate and rectum in the planning CT images.
Med Image Anal. 2015 Dec;26(1):345-56. doi: 10.1016/j.media.2015.06.007. Epub 2015 Oct 2.

本文引用的文献

1
Incremental learning with selective memory (ILSM): towards fast prostate localization for image guided radiotherapy.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):378-86. doi: 10.1007/978-3-642-40763-5_47.
2
Prostate Segmentation in CT Images via Spatial-Constrained Transductive Lasso.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2013. doi: 10.1109/CVPR.2013.289.
3
Prostate segmentation by sparse representation based classification.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):451-8. doi: 10.1007/978-3-642-33454-2_56.
4
Sparse patch-based label propagation for accurate prostate localization in CT images.
IEEE Trans Med Imaging. 2013 Feb;32(2):419-34. doi: 10.1109/TMI.2012.2230018. Epub 2012 Nov 27.
5
Prostate segmentation by sparse representation based classification.
Med Phys. 2012 Oct;39(10):6372-87. doi: 10.1118/1.4754304.
6
Deformable segmentation via sparse representation and dictionary learning.
Med Image Anal. 2012 Oct;16(7):1385-96. doi: 10.1016/j.media.2012.07.007. Epub 2012 Aug 23.
7
Multifeature landmark-free active appearance models: application to prostate MRI segmentation.
IEEE Trans Med Imaging. 2012 Aug;31(8):1638-50. doi: 10.1109/TMI.2012.2201498. Epub 2012 May 30.
8
A feature-based learning framework for accurate prostate localization in CT images.
IEEE Trans Image Process. 2012 Aug;21(8):3546-59. doi: 10.1109/TIP.2012.2194296. Epub 2012 Apr 9.
9
Learning image context for segmentation of prostate in CT-guided radiotherapy.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):570-8. doi: 10.1007/978-3-642-23626-6_70.
10
Towards robust and effective shape modeling: sparse shape composition.
Med Image Anal. 2012 Jan;16(1):265-77. doi: 10.1016/j.media.2011.08.004. Epub 2011 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验