IEEE Trans Med Imaging. 2014 Feb;33(2):518-34. doi: 10.1109/TMI.2013.2291495.
Image-guided radiotherapy (IGRT) requires fast and accurate localization of the prostate in 3-D treatment-guided radiotherapy, which is challenging due to low tissue contrast and large anatomical variation across patients. On the other hand, the IGRT workflow involves collecting a series of computed tomography (CT) images from the same patient under treatment. These images contain valuable patient-specific information yet are often neglected by previous works. In this paper, we propose a novel learning framework, namely incremental learning with selective memory (ILSM), to effectively learn the patient-specific appearance characteristics from these patient-specific images. Specifically, starting with a population-based discriminative appearance model, ILSM aims to "personalize" the model to fit patient-specific appearance characteristics. The model is personalized with two steps: backward pruning that discards obsolete population-based knowledge and forward learning that incorporates patient-specific characteristics. By effectively combining the patient-specific characteristics with the general population statistics, the incrementally learned appearance model can localize the prostate of a specific patient much more accurately. This work has three contributions: 1) the proposed incremental learning framework can capture patient-specific characteristics more effectively, compared to traditional learning schemes, such as pure patient-specific learning, population-based learning, and mixture learning with patient-specific and population data; 2) this learning framework does not have any parametric model assumption, hence, allowing the adoption of any discriminative classifier; and 3) using ILSM, we can localize the prostate in treatment CTs accurately (DSC ∼ 0.89 ) and fast ( ∼ 4 s), which satisfies the real-world clinical requirements of IGRT.
图像引导放疗(IGRT)需要快速准确地定位前列腺在 3-D 治疗引导放疗中,由于组织对比度低和患者间解剖结构变化大,这是一项具有挑战性的任务。另一方面,IGRT 工作流程涉及从接受治疗的同一患者中收集一系列计算机断层扫描(CT)图像。这些图像包含有价值的患者特定信息,但往往被以前的工作所忽视。在本文中,我们提出了一种新的学习框架,即带有选择性记忆的增量学习(ILSM),以有效地从这些患者特定的图像中学习患者特定的外观特征。具体来说,从基于群体的有区别的外观模型开始,ILSM 旨在“个性化”模型以适应患者特定的外观特征。模型通过两个步骤进行个性化处理:回溯修剪,丢弃过时的基于群体的知识;前向学习,整合患者特定的特征。通过有效地将患者特定的特征与总体人群统计数据相结合,增量学习的外观模型可以更准确地定位特定患者的前列腺。这项工作有三个贡献:1)与传统的学习方案(如纯患者特定学习、基于群体的学习和基于患者特定和群体数据的混合学习)相比,所提出的增量学习框架可以更有效地捕获患者特定的特征;2)这个学习框架没有任何参数模型假设,因此,可以采用任何有区别的分类器;3)使用 ILSM,我们可以准确( DSC∼0.89 )和快速(∼4 s)定位治疗 CT 中的前列腺,这满足了 IGRT 的实际临床要求。