Suppr超能文献

利用MRI和低剂量脑部[18F]FDG PET图像预测标准剂量脑部PET图像。

Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images.

作者信息

Kang Jiayin, Gao Yaozong, Shi Feng, Lalush David S, Lin Weili, Shen Dinggang

机构信息

School of Electronics Engineering, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China and IDEA Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.

IDEA Laboratory, Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.

出版信息

Med Phys. 2015 Sep;42(9):5301-9. doi: 10.1118/1.4928400.

Abstract

PURPOSE

Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient's exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [(18)F]FDG PET image by using a low-dose brain [(18)F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image.

METHODS

The authors employ a regression forest for predicting the standard-dose brain [(18)F]FDG PET image by low-dose brain [(18)F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [(18)F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy.

RESULTS

The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [(18)F]FDG PET image and substantially enhanced image quality of low-dose brain [(18)F]FDG PET image.

CONCLUSIONS

In this paper, the authors propose a framework to generate standard-dose brain [(18)F]FDG PET image using low-dose brain [(18)F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [(18)F]FDG PET can be well-predicted using MRI and low-dose brain [(18)F]FDG PET.

摘要

目的

正电子发射断层扫描(PET)是一种核医学成像技术,可生成反映人体组织代谢活动的三维图像。PET已广泛应用于各种临床应用,如脑部疾病的诊断。高质量的PET图像在脑部疾病诊断中起着至关重要的作用。在实际应用中,为了获得高质量的PET图像,需要使用标准剂量的放射性核素(示踪剂)并注入活体。结果,这将不可避免地增加患者的辐射暴露。解决这个问题的一种方法是使用低剂量PET图像预测标准剂量PET图像。到目前为止,尚未有关于这种方法的先前研究报道。因此,在本文中,作者提出了一种基于回归森林的框架,用于通过使用低剂量脑部[(18)F]FDG PET图像及其相应的磁共振成像(MRI)图像来预测标准剂量脑部[(18)F]FDG PET图像。

方法

作者采用回归森林,通过低剂量脑部[(18)F]FDG PET和MRI图像来预测标准剂量脑部[(18)F]FDG PET图像。具体而言,所提出的方法包括两个主要步骤。首先,基于MRI图像中分割出的脑组织(即脑脊液、灰质和白质),作者从低剂量PET和MRI图像中提取脑图像中每个小块的特征,以建立可用于初步预测标准剂量脑部[(18)F]FDG PET图像的组织特异性模型。其次,通过估计预测图像差异的迭代细化策略用于进一步提高预测准确性。

结果

作者使用留一法交叉验证在一个脑部数据集上评估了他们的算法,该数据集由11名受试者的MRI、低剂量PET和标准剂量PET图像组成。所提出的算法给出了有前景的结果,对标准剂量脑部[(18)F]FDG PET图像估计良好,并且低剂量脑部[(18)F]FDG PET图像的质量有显著提高。

结论

在本文中,作者提出了一个使用低剂量脑部[(18)F]FDG PET和MRI图像生成标准剂量脑部[(18)F]FDG PET图像的框架。视觉和定量结果均表明,使用MRI和低剂量脑部[(18)F]FDG PET可以很好地预测标准剂量脑部[(18)F]FDG PET。

相似文献

3
Defining optimal tracer activities in pediatric oncologic whole-body F-FDG-PET/MRI.确定儿科肿瘤全身F-FDG-PET/MRI中的最佳示踪剂活性。
Eur J Nucl Med Mol Imaging. 2016 Dec;43(13):2283-2289. doi: 10.1007/s00259-016-3503-5. Epub 2016 Aug 26.
7
Feasibility of F-FDG Dose Reductions in Breast Cancer PET/MRI.乳腺癌 PET/MRI 中 F-FDG 剂量降低的可行性。
J Nucl Med. 2018 Dec;59(12):1817-1822. doi: 10.2967/jnumed.118.209007. Epub 2018 Jun 7.

引用本文的文献

7
PET Image Denoising using a Deep-Learning Method for Extremely Obese Patients.使用深度学习方法对极度肥胖患者进行PET图像去噪
IEEE Trans Radiat Plasma Med Sci. 2022 Sep;6(7):766-770. doi: 10.1109/trpms.2021.3131999. Epub 2021 Dec 2.
9
Artificial intelligence guided enhancement of digital PET: scans as fast as CT?人工智能引导的数字 PET 增强:扫描速度堪比 CT 吗?
Eur J Nucl Med Mol Imaging. 2022 Nov;49(13):4503-4515. doi: 10.1007/s00259-022-05901-x. Epub 2022 Jul 29.

本文引用的文献

1
Role of Global Disease Assessment by Combined PET-CT-MR Imaging in Examining Cardiovascular Disease.
PET Clin. 2011 Oct;6(4):421-9. doi: 10.1016/j.cpet.2011.10.003. Epub 2011 Nov 24.
5
Gradient boosting machines, a tutorial.梯度提升机,教程。
Front Neurorobot. 2013 Dec 4;7:21. doi: 10.3389/fnbot.2013.00021. eCollection 2013.
8
A random forest classifier for lymph diseases.用于淋巴疾病的随机森林分类器。
Comput Methods Programs Biomed. 2014 Feb;113(2):465-73. doi: 10.1016/j.cmpb.2013.11.004. Epub 2013 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验