1] Université de Lyon, Institut des Nanotechnologies de Lyon (INL) UMR 5270, Ecole Centrale de Lyon, 69130 Ecully, France [2] CUDOS, Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, New South Wales 2006, Australia.
CUDOS, Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, New South Wales 2006, Australia.
Nat Commun. 2014;5:3246. doi: 10.1038/ncomms4246.
The ability to use coherent light for material science and applications is linked to our ability to measure short optical pulses. While free-space optical methods are well established, achieving this on a chip would offer the greatest benefit in footprint, performance and cost, and allow the integration with complementary signal-processing devices. A key goal is to achieve operation at sub-watt peak power levels and on sub-picosecond timescales. Previous integrated demonstrations require either a temporally synchronized reference pulse, an off-chip spectrometer or long tunable delay lines. Here we report a device capable of achieving single-shot time-domain measurements of near-infrared picosecond pulses based on an ultra-compact integrated CMOS-compatible device, which could operate without any external instrumentation. It relies on optical third-harmonic generation in a slow-light silicon waveguide. Our method can also serve as an in situ diagnostic tool to map, at visible wavelengths, the propagation dynamics of near-infrared pulses in photonic crystals.
相干光在材料科学和应用中的应用能力与我们测量短光脉冲的能力密切相关。虽然自由空间光学方法已经成熟,但在芯片上实现这一目标将在占地面积、性能和成本方面带来最大的益处,并允许与互补的信号处理设备集成。一个关键目标是实现亚瓦特峰值功率水平和亚皮秒时间尺度的操作。以前的集成演示需要时间同步参考脉冲、片外光谱仪或长可调延迟线。在这里,我们报告了一种基于超紧凑集成 CMOS 兼容器件的近红外皮秒脉冲单次时域测量的设备,它可以在没有任何外部仪器的情况下运行。它依赖于在慢光硅波导中的光学三次谐波产生。我们的方法还可以作为一种原位诊断工具,用于在可见波长下映射光子晶体中近红外脉冲的传播动力学。