Klimek Amelia, Réty Bénédicte, Matei Ghimbeu Camélia, Frackowiak Elzbieta
Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, Poznan, 60-965, Poland.
Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse, Mulhouse, F-68100, France.
Adv Sci (Weinh). 2025 Aug;12(30):e05032. doi: 10.1002/advs.202505032. Epub 2025 May 30.
The necessity of tailoring the structure/texture of carbons to improve the performance of aqueous-based electrical double-layer capacitors (EDLCs) is emphasized. A green soft-salt templating approach allowed the preparation of a series of porous carbons for this target. The EDLCs operating in 1M LiSO demonstrated a maximum capacitance of 244 F g at 1.6 V (CsCl/KCl-T), long-term cycle life (288 h for LiCl/KCl-T), and a specific energy exceeding 10 Wh kg. The physicochemical properties of carbons have been correlated with capacitance, retention, and stability. The investigation by Raman spectroscopy revealed that carbons with the increased disorder, thus, higher I/I ratio, are in accord with enhanced capacitance. Active surface area (ASA) values, related to carbon defects, perfectly supported the Raman findings. Surface functionality, i.e., the phenol/ether and carboxyl groups are found to affect capacitance. The carbons showed a predominance of micropores, with a specific surface area (SSA) ranging from 2640 to 1453 m g. In sum, I/I, SSA, ASA, and volume of micropores are in linear proportion with capacitance at various regimes. However, the most ordered and less porous materials provided better lifespan performance. Therefore, a good compromise is required to satisfy both high capacitance and the long cycle life of EDLCs.
强调了调整碳材料的结构/纹理以提高水系双电层电容器(EDLC)性能的必要性。一种绿色软盐模板法能够制备一系列用于此目标的多孔碳材料。在1M LiSO中运行的EDLC在1.6V时展现出244F g的最大电容(CsCl/KCl-T)、长期循环寿命(LiCl/KCl-T为288小时)以及超过10Wh kg的比能量。碳材料的物理化学性质已与电容、保持率和稳定性相关联。拉曼光谱研究表明,无序度增加、即I/I比值更高的碳材料与增强的电容相符。与碳缺陷相关的活性表面积(ASA)值完美地支持了拉曼研究结果。发现表面官能团,即酚/醚和羧基会影响电容。这些碳材料以微孔为主,比表面积(SSA)范围为2640至1453m g。总之,在不同条件下,I/I、SSA、ASA和微孔体积与电容呈线性比例关系。然而,最有序且孔隙较少的材料具有更好的寿命性能。因此,需要做出良好的权衡以同时满足EDLC的高电容和长循环寿命。