Suppr超能文献

糖尿病个性化医疗简介

Introduction to personalized medicine in diabetes mellitus.

作者信息

Glauber Harry S, Rishe Naphtali, Karnieli Eddy

机构信息

Department of Endocrinology, Northwest Permanente, Portland, Oregon, USA; ; Galil Center for Telemedicine, Medical Informatics and Personalized Medicine, RB Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.

Florida International University, Miami, Florida, USA;

出版信息

Rambam Maimonides Med J. 2014 Jan 21;5(1):e0002. doi: 10.5041/RMMJ.10136. eCollection 2014 Jan.

Abstract

The world is facing an epidemic rise in diabetes mellitus (DM) incidence, which is challenging health funders, health systems, clinicians, and patients to understand and respond to a flood of research and knowledge. Evidence-based guidelines provide uniform management recommendations for "average" patients that rarely take into account individual variation in susceptibility to DM, to its complications, and responses to pharmacological and lifestyle interventions. Personalized medicine combines bioinformatics with genomic, proteomic, metabolomic, pharmacogenomic ("omics") and other new technologies to explore pathophysiology and to characterize more precisely an individual's risk for disease, as well as response to interventions. In this review we will introduce readers to personalized medicine as applied to DM, in particular the use of clinical, genetic, metabolic, and other markers of risk for DM and its chronic microvascular and macrovascular complications, as well as insights into variations in response to and tolerance of commonly used medications, dietary changes, and exercise. These advances in "omic" information and techniques also provide clues to potential pathophysiological mechanisms underlying DM and its complications.

摘要

全球糖尿病(DM)发病率呈流行趋势上升,这对卫生资助者、卫生系统、临床医生和患者构成挑战,要求他们理解并应对大量的研究和知识。循证指南为“普通”患者提供统一的管理建议,但很少考虑到个体在糖尿病易感性、并发症以及对药物和生活方式干预反应方面的差异。精准医学将生物信息学与基因组学、蛋白质组学、代谢组学、药物基因组学(“组学”)及其他新技术相结合,以探索病理生理学,并更精确地描述个体的疾病风险以及对干预措施的反应。在本综述中,我们将向读者介绍应用于糖尿病的精准医学,特别是糖尿病及其慢性微血管和大血管并发症风险的临床、遗传、代谢及其他标志物的应用,以及对常用药物反应和耐受性、饮食变化及运动方面个体差异的见解。“组学”信息和技术的这些进展也为糖尿病及其并发症潜在的病理生理机制提供了线索。

相似文献

1
Introduction to personalized medicine in diabetes mellitus.
Rambam Maimonides Med J. 2014 Jan 21;5(1):e0002. doi: 10.5041/RMMJ.10136. eCollection 2014 Jan.
2
3
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
Pharmacogenomics in the treatment of mood disorders: Strategies and Opportunities for personalized psychiatry.
EPMA J. 2017 Sep 5;8(3):211-227. doi: 10.1007/s13167-017-0112-8. eCollection 2017 Sep.
5
Pharmacogenomics and Personalized Medicine in Type 2 Diabetes Mellitus: Potential Implications for Clinical Practice.
Pharmgenomics Pers Med. 2021 Nov 13;14:1441-1455. doi: 10.2147/PGPM.S329787. eCollection 2021.
6
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
Artif Intell Med. 2019 Jul;98:109-134. doi: 10.1016/j.artmed.2019.07.007. Epub 2019 Jul 26.
8
Predictive biomarkers for type 2 of diabetes mellitus: Bridging the gap between systems research and personalized medicine.
J Proteomics. 2018 Sep 30;188:59-62. doi: 10.1016/j.jprot.2018.03.004. Epub 2018 Mar 5.
9
Prevention of the complications of diabetes.
Am J Manag Care. 2003 Mar;9(3 Suppl):S63-80; quiz S81-4.

引用本文的文献

1
Transform diabetes care with precision medicine.
Health Sci Rep. 2023 Oct 30;6(11):e1642. doi: 10.1002/hsr2.1642. eCollection 2023 Nov.
2
DMTO: a realistic ontology for standard diabetes mellitus treatment.
J Biomed Semantics. 2018 Feb 6;9(1):8. doi: 10.1186/s13326-018-0176-y.
3
Systems and precision medicine approaches to diabetes heterogeneity: a Big Data perspective.
Clin Transl Med. 2017 Dec;6(1):23. doi: 10.1186/s40169-017-0155-4. Epub 2017 Jul 25.
4
Older Adult Self-Efficacy Study of Mobile Phone Diabetes Management.
Diabetes Technol Ther. 2015 Jul;17(7):455-61. doi: 10.1089/dia.2014.0341. Epub 2015 Feb 18.
5
Diabetic retinopathy: variations in patient therapeutic outcomes and pharmacogenomics.
Pharmgenomics Pers Med. 2014 Dec 12;7:399-409. doi: 10.2147/PGPM.S52821. eCollection 2014.
6
Meha 2014: a national seminar on diabetes mellitus.
J Ayurveda Integr Med. 2014 Jul;5(3):199-200.

本文引用的文献

2
Preventing type 2 diabetes mellitus: a call for personalized intervention.
Perm J. 2013 Summer;17(3):74-9. doi: 10.7812/TPP/12-143.
3
2-Aminoadipic acid is a biomarker for diabetes risk.
J Clin Invest. 2013 Oct;123(10):4309-17. doi: 10.1172/JCI64801. Epub 2013 Sep 16.
4
Pharmacogenomic testing and antithrombotic therapy: ready for prime time?
Rambam Maimonides Med J. 2013 Jan 30;4(1):e0005. doi: 10.5041/RMMJ.10105. Print 2013 Jan.
5
The prevalence of meeting A1C, blood pressure, and LDL goals among people with diabetes, 1988-2010.
Diabetes Care. 2013 Aug;36(8):2271-9. doi: 10.2337/dc12-2258. Epub 2013 Feb 15.
7
Fasting glucose level and the risk of incident atherosclerotic cardiovascular diseases.
Diabetes Care. 2013 Jul;36(7):1988-93. doi: 10.2337/dc12-1577. Epub 2013 Feb 12.
8
Epigenetic changes in diabetes.
Clin Genet. 2013 Jul;84(1):1-10. doi: 10.1111/cge.12121. Epub 2013 Mar 11.
9
sRAGE and risk of diabetes, cardiovascular disease, and death.
Diabetes. 2013 Jun;62(6):2116-21. doi: 10.2337/db12-1528. Epub 2013 Feb 8.
10
Urinary liver-type fatty acid-binding protein and progression of diabetic nephropathy in type 1 diabetes.
Diabetes Care. 2013 Jul;36(7):2077-83. doi: 10.2337/dc12-1868. Epub 2013 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验