Capobianco Enrico
Center for Computational Science, University of Miami, Miami, FL, USA.
Clin Transl Med. 2017 Dec;6(1):23. doi: 10.1186/s40169-017-0155-4. Epub 2017 Jul 25.
Big Data, and in particular Electronic Health Records, provide the medical community with a great opportunity to analyze multiple pathological conditions at an unprecedented depth for many complex diseases, including diabetes. How can we infer on diabetes from large heterogeneous datasets? A possible solution is provided by invoking next-generation computational methods and data analytics tools within systems medicine approaches. By deciphering the multi-faceted complexity of biological systems, the potential of emerging diagnostic tools and therapeutic functions can be ultimately revealed. In diabetes, a multidimensional approach to data analysis is needed to better understand the disease conditions, trajectories and the associated comorbidities. Elucidation of multidimensionality comes from the analysis of factors such as disease phenotypes, marker types, and biological motifs while seeking to make use of multiple levels of information including genetics, omics, clinical data, and environmental and lifestyle factors. Examining the synergy between multiple dimensions represents a challenge. In such regard, the role of Big Data fuels the rise of Precision Medicine by allowing an increasing number of descriptions to be captured from individuals. Thus, data curations and analyses should be designed to deliver highly accurate predicted risk profiles and treatment recommendations. It is important to establish linkages between systems and precision medicine in order to translate their principles into clinical practice. Equivalently, to realize their full potential, the involved multiple dimensions must be able to process information ensuring inter-exchange, reducing ambiguities and redundancies, and ultimately improving health care solutions by introducing clinical decision support systems focused on reclassified phenotypes (or digital biomarkers) and community-driven patient stratifications.
大数据,尤其是电子健康记录,为医学界提供了一个绝佳机会,能够以前所未有的深度分析包括糖尿病在内的许多复杂疾病的多种病理状况。我们如何从大型异构数据集中推断糖尿病情况呢?系统医学方法中引入下一代计算方法和数据分析工具提供了一种可能的解决方案。通过解读生物系统的多方面复杂性,最终可以揭示新兴诊断工具和治疗功能的潜力。在糖尿病研究中,需要采用多维数据分析方法,以更好地了解疾病状况、病程以及相关的合并症。多维性的阐释来自对疾病表型、标志物类型和生物学基序等因素的分析,同时力求利用包括遗传学、组学、临床数据以及环境和生活方式因素在内的多个层面的信息。研究多个维度之间的协同作用是一项挑战。在这方面,大数据的作用推动了精准医学的兴起,因为它能够从个体中获取越来越多的描述信息。因此,数据管理和分析应旨在提供高度准确的预测风险概况和治疗建议。在系统医学和精准医学之间建立联系,以便将其原则转化为临床实践,这一点很重要。同样,为了充分发挥其潜力,所涉及的多个维度必须能够处理信息,确保相互交流,减少模糊性和冗余性,并最终通过引入专注于重新分类表型(或数字生物标志物)和社区驱动的患者分层的临床决策支持系统来改善医疗保健解决方案。