Rosta Edina, Yang Wei, Hummer Gerhard
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States.
J Am Chem Soc. 2014 Feb 26;136(8):3137-44. doi: 10.1021/ja411408x. Epub 2014 Feb 18.
Most phosphate-processing enzymes require Mg(2+) as a cofactor to catalyze nucleotide cleavage and transfer reactions. Ca(2+) ions inhibit many of these enzymatic activities, despite Ca(2+) and Mg(2+) having comparable binding affinities and overall biological abundances. Here we study the molecular details of the calcium inhibition mechanism for phosphodiester cleavage, an essential reaction in the metabolism of nucleic acids and nucleotides, by comparing Ca(2+)- and Mg(2+) catalyzed reactions. We study the functional roles of the specific metal ion sites A and B in enabling the catalytic cleavage of an RNA/DNA hybrid substrate by B. halodurans ribonuclease (RNase) H1 using hybrid quantum-mechanics/molecular mechanics (QM/MM) free energy calculations. We find that Ca(2+) substitution of either of the two active-site Mg(2+) ions substantially increases the height of the reaction barrier and thereby abolishes the catalytic activity. Remarkably, Ca(2+) at the A site is inactive also in Mg(2+)-optimized active-site structures along the reaction path, whereas Mg(2+) substitution recovers activity in Ca(2+)-optimized structures. Geometric changes resulting from Ca(2+) substitution at metal ion site A may thus be a secondary factor in the loss of catalytic activity. By contrast, at metal ion site B geometry plays a more important role, with only a partial recovery of activity after Mg(2+) substitution in Ca(2+)-optimized structures. Ca(2+)-substitution also leads to a change in mechanism, with deprotonation of the water nucleophile requiring a closer approach to the scissile phosphate, which in turn increases the barrier. As a result, Ca(2+) is less efficient in activating the water. As a likely cause for the different reactivities of Mg(2+) and Ca(2+) ions in site A, we identify differences in charge transfer to the ions and the associated decrease in the pKa of the oxygen nucleophile attacking the phosphate group.
大多数磷酸加工酶需要Mg(2+)作为辅因子来催化核苷酸裂解和转移反应。尽管Ca(2+)和Mg(2+)具有相当的结合亲和力和总体生物学丰度,但Ca(2+)离子会抑制许多此类酶活性。在这里,我们通过比较Ca(2+)和Mg(2+)催化的反应,研究了核酸和核苷酸代谢中的关键反应——磷酸二酯裂解的钙抑制机制的分子细节。我们使用混合量子力学/分子力学(QM/MM)自由能计算,研究了特定金属离子位点A和B在嗜碱芽孢杆菌核糖核酸酶(RNase)H1催化裂解RNA/DNA杂交底物中的功能作用。我们发现,两个活性位点的Mg(2+)离子中的任何一个被Ca(2+)取代,都会大幅增加反应势垒的高度,从而消除催化活性。值得注意的是,沿着反应路径,在位点A处的Ca(2+)在Mg(2+)优化的活性位点结构中也无活性,而Mg(2+)取代在Ca(2+)优化的结构中恢复了活性。因此,金属离子位点A处Ca(2+)取代导致的几何变化可能是催化活性丧失的次要因素。相比之下,在金属离子位点B处,几何结构起着更重要的作用,在Ca(2+)优化的结构中Mg(2+)取代后,活性仅部分恢复。Ca(2+)取代还导致了机制的变化,水亲核试剂的去质子化需要更接近可裂解的磷酸基团,这反过来又增加了势垒。结果,Ca(2+)在激活水方面效率较低。作为位点A中Mg(2+)和Ca(2+)离子反应性不同的可能原因,我们确定了向离子的电荷转移差异以及攻击磷酸基团的氧亲核试剂pKa的相关降低。