Suppr超能文献

通过剪接的各个阶段来可视化 II 类内含子催化作用。

Visualizing group II intron catalysis through the stages of splicing.

机构信息

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.

出版信息

Cell. 2012 Oct 26;151(3):497-507. doi: 10.1016/j.cell.2012.09.033.

Abstract

Group II introns are self-splicing ribozymes that share a reaction mechanism and a common ancestor with the eukaryotic spliceosome, thereby providing a model system for understanding the chemistry of pre-mRNA splicing. Here we report 14 crystal structures of a group II intron at different stages of catalysis. We provide a detailed mechanism for the first step of splicing, we describe a reversible conformational change between the first and the second steps of splicing, and we present the ligand-free intron structure after splicing in an active state that corresponds to the retrotransposable form of the intron. During each reaction, the reactants are aligned and activated by a heteronuclear four-metal-ion center that contains a metal cluster and obligate monovalent cations, and they adopt a structural arrangement similar to that of protein endonucleases. Based on our data, we propose a model for the splicing cycle and show that it is applicable to the eukaryotic spliceosome.

摘要

内含子 II 是自我剪接的核酶,它们与真核剪接体共享反应机制和共同的祖先,从而为理解前体 mRNA 剪接的化学提供了一个模型系统。在这里,我们报告了一个内含子 II 在不同催化阶段的 14 个晶体结构。我们提供了剪接第一步的详细机制,描述了剪接的第一和第二步之间的可逆构象变化,并呈现了配体自由的内含子结构,该结构对应于内含子的反转座形式。在每个反应中,反应物通过包含金属簇和必需单价阳离子的异核四金属离子中心对齐和激活,并采用类似于蛋白内切酶的结构排列。基于我们的数据,我们提出了一个剪接循环模型,并表明它适用于真核剪接体。

相似文献

1
Visualizing group II intron catalysis through the stages of splicing.
Cell. 2012 Oct 26;151(3):497-507. doi: 10.1016/j.cell.2012.09.033.
2
Visualizing group II intron dynamics between the first and second steps of splicing.
Nat Commun. 2020 Jun 5;11(1):2837. doi: 10.1038/s41467-020-16741-4.
3
Crystal structure of a self-spliced group II intron.
Science. 2008 Apr 4;320(5872):77-82. doi: 10.1126/science.1153803.
4
Group II intron lariat: Structural insights into the spliceosome.
RNA Biol. 2015;12(9):913-7. doi: 10.1080/15476286.2015.1066956.
5
Bacterial group II introns generate genetic diversity by circularization and trans-splicing from a population of intron-invaded mRNAs.
PLoS Genet. 2018 Nov 21;14(11):e1007792. doi: 10.1371/journal.pgen.1007792. eCollection 2018 Nov.
7
Crystal structure of a group II intron in the pre-catalytic state.
Nat Struct Mol Biol. 2012 Apr 8;19(5):555-7. doi: 10.1038/nsmb.2270.
8
Principle of K/Na selectivity in the active site of group II intron at various stages of self-splicing pathway.
J Mol Graph Model. 2018 Sep;84:1-9. doi: 10.1016/j.jmgm.2018.05.003. Epub 2018 May 14.
9
Retroelement origins of pre-mRNA splicing.
Wiley Interdiscip Rev RNA. 2020 Jul;11(4):e1589. doi: 10.1002/wrna.1589. Epub 2020 Feb 11.
10
Structural insights into group II intron catalysis and branch-site selection.
Science. 2002 Mar 15;295(5562):2084-8. doi: 10.1126/science.1069268. Epub 2002 Feb 21.

引用本文的文献

1
A small cationic probe for accurate, punctate discovery of RNA tertiary structure.
bioRxiv. 2025 Aug 30:2025.08.29.672938. doi: 10.1101/2025.08.29.672938.
4
Functional relevance of CASP16 nucleic acid predictions as evaluated by structure providers.
bioRxiv. 2025 Apr 18:2025.04.15.649049. doi: 10.1101/2025.04.15.649049.
6
Structural basis of circularly permuted group II intron self-splicing.
Nat Struct Mol Biol. 2025 Jan 31. doi: 10.1038/s41594-025-01484-x.
7
Determining structures of RNA conformers using AFM and deep neural networks.
Nature. 2025 Jan;637(8048):1234-1243. doi: 10.1038/s41586-024-07559-x. Epub 2024 Dec 18.
8
FURNA: A database for functional annotations of RNA structures.
PLoS Biol. 2024 Jul 29;22(7):e3002476. doi: 10.1371/journal.pbio.3002476. eCollection 2024 Jul.
10
Intron lariat spliceosomes convert lariats to true circles: implications for intron transposition.
Genes Dev. 2024 May 21;38(7-8):322-335. doi: 10.1101/gad.351764.124.

本文引用的文献

1
Crystal structure of a group II intron in the pre-catalytic state.
Nat Struct Mol Biol. 2012 Apr 8;19(5):555-7. doi: 10.1038/nsmb.2270.
2
Structure of the yeast U2/U6 snRNA complex.
RNA. 2012 Apr;18(4):673-83. doi: 10.1261/rna.031138.111. Epub 2012 Feb 10.
3
Use of RmInt1, a group IIB intron lacking the intron-encoded protein endonuclease domain, in gene targeting.
Appl Environ Microbiol. 2011 Feb;77(3):854-61. doi: 10.1128/AEM.02319-10. Epub 2010 Nov 29.
4
The tertiary structure of group II introns: implications for biological function and evolution.
Crit Rev Biochem Mol Biol. 2010 Jun;45(3):215-32. doi: 10.3109/10409231003796523.
5
Semiautomated model building for RNA crystallography using a directed rotameric approach.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8177-82. doi: 10.1073/pnas.0911888107. Epub 2010 Apr 19.
6
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
7
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.
8
Tertiary architecture of the Oceanobacillus iheyensis group II intron.
RNA. 2010 Jan;16(1):57-69. doi: 10.1261/rna.1844010. Epub 2009 Dec 1.
9
A structural analysis of the group II intron active site and implications for the spliceosome.
RNA. 2010 Jan;16(1):1-9. doi: 10.1261/rna.1791310. Epub 2009 Nov 30.
10
On the divalent metal ion dependence of DNA cleavage by restriction endonucleases of the EcoRI family.
J Mol Biol. 2009 Oct 16;393(1):140-60. doi: 10.1016/j.jmb.2009.08.011. Epub 2009 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验